精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕精英家教网点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△OMN是否相似,并说明理由;
(2)求过点A的反比例函数解析式;
(3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式;
(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG的对称中心,并说明理由.
分析:(1)由已知,得∠OGA=∠M=90°,∠GOA=∠MON,易得△OGA∽△OMN.
(2)根据(1)的结论,可得AG的值,即A的坐标,设反比例函数y=
k
x
,把A(1,2)代入,得k=2,即y=
2
x

(3)易得B的坐标,设y=mx+n,把A(1,2),B(4,
1
2
)代入可得方程组,解可得mn的值,代入可得直线AB的解析式;
(4)设矩形OEFG的对称中心为Q,易得点Q坐标为(2,1),将其代入解析式,即可判断出答案.
解答:解:(1)△OGA∽△OMN.(1分)
由已知,得∠OGA=∠M=90°,∠GOA=∠MON,
∴△OGA∽△OMN.(2分)

(2)由(1)得
AG
MN
=
OG
OM

AG
2
=
2
4
,AG=1,
∴A(1,2).(3分)
设反比例函数y=
k
x
,把A(1,2)代入,得k=2,即y=
2
x
.(4分)

(3)∵点B的横坐标为4,把x=4代入y=
2
x
中得,y=
1
2
,即B(4,
1
2
).(5分)
设y=mx+n,把A(1,2),B(4,
1
2
)代入,得
m+n=2
4m+n=
1
2
解得
m=-
1
2
n=
5
2

∴y=-
1
2
x+
5
2
.(8分)


(4)设矩形OEFG的对称中心为Q,则点Q坐标为(2,1).
把x=2代入y=
2
x
,得y=1.
∴反比例函数的图象经过矩形OEFG的对称中心.(10分)
点评:综合考查三角形相似的判定,反比例函数直线关系式的求法,及中心对称的有关知识.此题综合性强,有一定的难度,有利于培养同学们勇于探索的良好学习习惯.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案