精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C所对的边分别是a、b、c,tanA=
1
2
,cosB=
3
10
10

(1)求角C;
(2)若△ABC的最短边长是
5
,求最长边的长.
分析:(1)由tanA的值,根据A的范围,利用同角三角函数间的基本关系分别求出sinA和cosA的值,同时由cosB的值,由B的范围,利用同角三角函数间的基本关系求出sinB的值,然后根据诱导公式得cosC等于-cos(A+B),利用两角和的余弦函数公式化简,将各自的值代入即可求出cosC的值,根据C的范围,利用特殊角的三角函数值即可得到角C的度数;
(2)由sinA的值大于sinB的值,得到角A大于角B,即可得a大于b,得到b为最短的边,然后利用正弦定理,由b,sinB及sinC的值即可求出最长边c的值.
解答:解:(1)∵tanA=
1
2

∴A为锐角,则cosA=
2
5
5
,sinA=
5
5

又cosB=
3
10
10
,∴B为锐角,则sinB=
10
10

∴cosC=-cos(A+B)=-cosAcosB+sinAsinB
=-
2
5
5
×
3
10
10
+
5
5
×
10
10
=-
2
2

又C∈(0,π),
∴C=
3
4
π.
(2)∵sinA=
5
5
>sinB=
10
10

∴A>B,即a>b,
∴b最小,c最大,
由正弦定理得
b
sinB
=
c
sinC

得c=
sinC
sinB
•b=
2
2
10
10
5
=5.
点评:此题考查学生灵活运用同角三角函数间的基本关系、诱导公式及正弦定理化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案