精英家教网 > 高中数学 > 题目详情

设数列{}(∈N*)满足是其前n项的和,且,则下列结论错误的是

    A.<0   B.a7=0    C.S9>S5   D.S6与S7均为Sn的最大值

 

【答案】

C

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=2,an+1=4an-3n+1,n∈N*
(1)设bn=an-n,求数列{bn}的通项公式;
(2)设数列an的前n项和为Sn,证明:对任意的n∈N*,不等式Sn+1≤4Sn恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,令Tn=
S1+S2+…+Sn
n
,称Tn为数列{an}的“理想数”,已知数列a1,a2…a501的“理想数”为2008,则数列2,a1,a2…a501的“理想数”为(  )
A、2002B、2004
C、2006D、2008

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,a1=1,an=3Sn(n≥2),则
lim
n→+∞
Sn-1
Sn+1+1
的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
x+1
的图象经过原点,且关于点(-1,1)成中心对称.
(1)求函数f(x)的解析式;
(2)若数列{an}满足an>0,a1=1,an+1=[f(
an
)]2
,求数列{an}的通项公式;
(3)在(2)的条件下,设数列{an}的前n项和为Sn,试判断Sn与2的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)设数列{an}的前n项和为Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是数列{log2an}的前n项和.
(1)求数列{an}的通项公式;
(2)求Tn
(3)求满足(1-
1
T2
)(1-
1
T3
)…(1-
1
Tn
)>
1010
2013
的最大正整数n的值.

查看答案和解析>>

同步练习册答案