精英家教网 > 高中数学 > 题目详情

设动点P到点F1(-1,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2,且2d1d2sin2=1.

(1)求证:

(2)求动点P的轨迹方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设动点P到点F1(-1,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图,过点F2的直线与双曲线C的右支交于A,B两点.问:是否存在λ,使△F1AB是以点B为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下5个命题:
①曲线x2-(y-1)2=1按
a
=(1,-2)
平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,|
PA
|-|
PB
|=n
,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量
AB
AP
夹角为锐角θ,且满足 |
PB
| |
AB
| +
PA
AB
=0
,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源:2013年山东省淄博市高考数学模拟试卷3(理科)(解析版) 题型:解答题

设动点P到点F1(-1,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图,过点F2的直线与双曲线C的右支交于A,B两点.问:是否存在λ,使△F1AB是以点B为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2007年江西省高考数学试卷(文科)(解析版) 题型:解答题

设动点P到点F1(-1,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图,过点F2的直线与双曲线C的右支交于A,B两点.问:是否存在λ,使△F1AB是以点B为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案