精英家教网 > 高中数学 > 题目详情
如图,ABCD-A1B1C1D1为一正方体,则直线AC和BC1所成角的大小为
60°
60°
分析:连接A1C1,A1B,易得△A1C1B为等边三角形,进而得到∠A1C1B=60°,再由异面直线夹角的定义,可得直线AC和BC1所成角的大小
解答:解:连接A1C1,A1B
根据正方体的几何特征可得A1C1,A1B,BC1均为正方体的面对角线
∴A1C1=A1B=BC1
∴△A1C1B为等边三角形
∴∠A1C1B=60°
又∵A1C1∥AC
故直线AC和BC1所成角的大小为60°
故答案为:60°
点评:本题考查的知识点是异面及其所成的角,通过平移直线构造三角形,通过解三角形求异面直线的夹角是解答此类问题最常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,ABCD-A1B1C1D1是棱长为6的正方体,E、F分别是棱AB、BC上的动点,且AE=BF.
(1)求证:A1F⊥C1E;
(2)当A1、E、F、C1共面时,求:
①D1到直线C1E的距离;
②面A1DE与面C1DF所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD-A1B1C1D1为正方体,下面结论中正确的是
①②④
①②④
.(把你认为正确的结论都填上)
①BD∥平面CB1D1
②AC1⊥平面CB1D1
③AC1与底面ABCD所成角的正切值是
2

④二面角C-B1D1-C1的正切值是
2

⑤过点A1与异面直线AD与CB1成70°角的直线有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD-A1B1C1D1为正方体,下面结论中正确的结论是
①②
①②
.(把你认为正确的结论都填上)
①BD∥平面CB1D1
②AC1⊥平面CB1D1
③过点A1与异面直线AD和CB1成90°角的直线有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD—A1B1C1D1中,点O是B1D1的中点,直线A1C交平面AB1D1于点M,对下列结论,错误的是(    )

A.A、M、O三点共线                      B.A、M、O、A1四点共面

C.A、O、C、M四点共面                 D.B、B1、O、M四点共面

查看答案和解析>>

科目:高中数学 来源:2011年广东省江门市高考数学一模试卷(理科)(解析版) 题型:解答题

如图,ABCD-A1B1C1D1是棱长为6的正方体,E、F分别是棱AB、BC上的动点,且AE=BF.
(1)求证:A1F⊥C1E;
(2)当A1、E、F、C1共面时,求:
①D1到直线C1E的距离;
②面A1DE与面C1DF所成二面角的余弦值.

查看答案和解析>>

同步练习册答案