精英家教网 > 试题搜索列表 >用绝缘细绳系一质量为m的带正电小球,电量为q,在场强为E的竖直匀强电场中做匀速圆周运动,转动半径为R,求最高点A和最低点B的电势差是多少?

用绝缘细绳系一质量为m的带正电小球,电量为q,在场强为E的竖直匀强电场中做匀速圆周运动,转动半径为R,求最高点A和最低点B的电势差是多少?答案解析

科目:gzwl 来源: 题型:

(2011•重庆模拟)如图所示,光滑绝缘水平面上方有匀强电场E(图中未画出).在O点用长为L的轻质不可伸长的绝缘细绳系一质量m=0.02kg、带正电且电荷量q=4×10-4C的小球A,使其在竖直平面内以速度vA=2m/s沿顺时针方向做匀速圆周运动,运动到最低点时与地面刚好不接触.质量和电量与A完全相同的小球B以速度vB=10m/s 水平向右运动且恰好能与A球在最低点发生正碰,并瞬间成为一个整体C ( A、B、C均可以看作质点且与地面刚好不接触),碰后匀强电场大小立即变为E′=
3
E,方向变为水平向右方向.(不考虑 A、B 两小球间库仑力作用)取g=10m/s2.求:
( 1 )匀强电场的电场强度E的大小和方向;
( 2 )A、B两小球正碰成为一个整体C的速度大小;
( 3 )要使整体C在随后的运动过程中,能在竖直面内作完整的圆周运动,绳长L应满足的条件.

查看答案和解析>>

科目:gzwl 来源:2010年四川省绵阳市高三第三次诊断性考试(理综)物理部分 题型:计算题

(20分)如图所示,光滑水平地面上方被竖直平面MN分隔成两部分,左边(包括竖直平面MN)有匀强磁场B,右边有匀强电场E0(图中未标)。在O点用长为L=5m的轻质不可伸长的绝缘细绳系一质量mA=0.02kg、带负电且电荷量qA=4×104C的小球A,使其在竖直平面内以速度vA=2.5m/s沿顺时针方向做匀速圆周运动,运动到最低点时与地面刚好不接触。处于原长的轻质弹簧左端固定在墙上,右端与质量mB=0.01kg、带负电且电荷量qB=2×104C的小球B接触但不连接,此时B球刚好位于M点。现用水平向左的推力将B球缓慢推到P点(弹簧仍在弹性限度内),推力所做的功是W=2.0J,当撤去推力后,B球沿地面向右运动到M点时对地面的压力刚好为零,继续运动恰好能与A球在最低点发生正碰,并瞬间成为一个整体CABC都可以看着质点),碰撞前后总电荷量保持不变,碰后瞬间匀强电场大小变为E1=1×103 N/C,方向不变。g=10m/s2。求:

(1)匀强磁场的磁感应强度B的大小和方向?

(2)匀强电场的电场强度E0的大小和方向?

(3)整体C运动到最高点时绳对C的拉力F的大小?

 

查看答案和解析>>

科目:gzwl 来源:2010年四川省绵阳市高三第三次诊断性考试(理综)物理部分 题型:计算题

(20分)如图所示,光滑水平地面上方被竖直平面MN分隔成两部分,左边(包括竖直平面MN)有匀强磁场B,右边有匀强电场E0(图中未标)。在O点用长为L=5m的轻质不可伸长的绝缘细绳系一质量mA=0.02kg、带负电且电荷量qA=4×104C的小球A,使其在竖直平面内以速度vA=2.5m/s沿顺时针方向做匀速圆周运动,运动到最低点时与地面刚好不接触。处于原长的轻质弹簧左端固定在墙上,右端与质量mB=0.01kg、带负电且电荷量qB=2×104C的小球B接触但不连接,此时B球刚好位于M点。现用水平向左的推力将B球缓慢推到P点(弹簧仍在弹性限度内),推力所做的功是W=2.0J,当撤去推力后,B球沿地面向右运动到M点时对地面的压力刚好为零,继续运动恰好能与A球在最低点发生正碰,并瞬间成为一个整体CABC都可以看着质点),碰撞前后总电荷量保持不变,碰后瞬间匀强电场大小变为E1=1×103 N/C,方向不变。g=10m/s2。求:
(1)匀强磁场的磁感应强度B的大小和方向?
(2)匀强电场的电场强度E0的大小和方向?
(3)整体C运动到最高点时绳对C的拉力F的大小?

查看答案和解析>>

科目:gzwl 来源: 题型:

(20分)如图所示,光滑水平地面上方被竖直平面MN分隔成两部分,左边(包括竖直平面MN)有匀强磁场B,右边有匀强电场E0(图中未标)。在O点用长为L=5m的轻质不可伸长的绝缘细绳系一质量mA=0.02kg、带负电且电荷量qA=4×104C的小球A,使其在竖直平面内以速度vA=2.5m/s沿顺时针方向做匀速圆周运动,运动到最低点时与地面刚好不接触。处于原长的轻质弹簧左端固定在墙上,右端与质量mB=0.01kg、带负电且电荷量qB=2×104C的小球B接触但不连接,此时B球刚好位于M点。现用水平向左的推力将B球缓慢推到P点(弹簧仍在弹性限度内),推力所做的功是W=2.0J,当撤去推力后,B球沿地面向右运动到M点时对地面的压力刚好为零,继续运动恰好能与A球在最低点发生正碰,并瞬间成为一个整体CABC都可以看着质点),碰撞前后总电荷量保持不变,碰后瞬间匀强电场大小变为E1=1×103 N/C,方向不变。g=10m/s2。求:

(1)匀强磁场的磁感应强度B的大小和方向?

(2)匀强电场的电场强度E0的大小和方向?

(3)整体C运动到最高点时绳对C的拉力F的大小?

 

查看答案和解析>>

科目:gzwl 来源: 题型:

如图所示,光滑水平地面上方被竖直平面MN分隔成两部分,左边(包括竖直平面MN)有匀强磁场B,右边有匀强电场E0(图中未标)。在O点用长为L=5m的轻质不可伸长的绝缘细绳系一质量mA=0.02kg、带负电且电荷量qA=4×104C的小球A,使其在竖直平面内以速度vA=2.5m/s沿顺时针方向做匀速圆周运动,运动到最低点时与地面刚好不接触。处于原长的轻质弹簧左端固定在墙上,右端与质量mB=0.01kg、带负电且电荷量qB=2×104C的小球B接触但不连接,此时B球刚好位于M点。现用水平向左的推力将B球缓慢推到P点(弹簧仍在弹性限度内),推力所做的功是W=2.0J,当撤去推力后,B球沿地面向右运动到M点时对地面的压力刚好为零,继续运动恰好能与A球在最低点发生正碰,并瞬间成为一个整体CABC都可以看着质点),碰撞前后总电荷量保持不变,碰后瞬间匀强电场大小变为E1=1×103 N/C,方向不变。g=10m/s2。求:

(1)匀强磁场的磁感应强度B的大小和方向?

(2)匀强电场的电场强度E0的大小和方向?

(3)整体C运动到最高点时绳对C的拉力F的大小?

查看答案和解析>>

科目:gzwl 来源:2011年重庆市部分区县高考物理一诊试卷(解析版) 题型:解答题

如图所示,光滑绝缘水平面上方有匀强电场E(图中未画出).在O点用长为L的轻质不可伸长的绝缘细绳系一质量m=0.02kg、带正电且电荷量q=4×10-4C的小球A,使其在竖直平面内以速度vA=2m/s沿顺时针方向做匀速圆周运动,运动到最低点时与地面刚好不接触.质量和电量与A完全相同的小球B以速度vB=10m/s 水平向右运动且恰好能与A球在最低点发生正碰,并瞬间成为一个整体C ( A、B、C均可以看作质点且与地面刚好不接触),碰后匀强电场大小立即变为E′=E,方向变为水平向右方向.(不考虑 A、B 两小球间库仑力作用)取g=10m/s2.求:
( 1 )匀强电场的电场强度E的大小和方向;
( 2 )A、B两小球正碰成为一个整体C的速度大小;
( 3 )要使整体C在随后的运动过程中,能在竖直面内作完整的圆周运动,绳长L应满足的条件.

查看答案和解析>>

科目:gzwl 来源: 题型:

如图所示,真空中xOy光滑绝缘水平面内,在坐标点M(L,0)固定一个点电荷-Q,坐标点N(4L,0)固定一个点电荷+2Q,以O点为圆心,半径为2L的圆与坐标轴的交点分别为A、B、C、D.已知若取无穷远处电势为零,则离点电荷Q距离为r处的电势为φ=k
Qr

(1)猜测圆上任意一点的场强方向的特征,并加以证明
(2)用长为2L的绝缘细线系一质量为m、电量为+q带电球,另外一端系在O点,要使小球能在细线拉力作用下做圆周运动,求其在D点的最小速度.

查看答案和解析>>

科目:gzwl 来源: 题型:

如图所示,在光滑的水平面上,有质量均为M的甲、乙两辆小车,甲车上有一轻质框架,框架上用轻质细绳系一质量为m的小球,把小球拉到水平位置由静止释放,当小球摆到最低位置时,甲、乙两车恰好相碰并连为一体,则
(1)小球摆至最低点时,小球的速度为多大?
(2)两车刚好碰撞完毕的瞬间,绳子当中的张力多大?

查看答案和解析>>

科目:gzwl 来源: 题型:

在光滑水平面上放有一斜面,其质量为M、倾角为θ,从斜面顶端用细绳系一质量为m的小球,细绳平行于斜面,如图所示。现用水平力F拉着斜面向右运动,为保证运动过程中小球不离开斜面,拉力F最大不能超过多少?

查看答案和解析>>

科目:gzwl 来源: 题型:

如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。

查看答案和解析>>

科目:gzwl 来源: 题型:022

如图所示, 在车厢顶板上, 用长为L=1m的细绳系一质量为m=500g的小球, 当车厢由静止突然以速度v=10m/s向前运动时, 细绳所受到的拉力为_______N.(g取10m/s2)

查看答案和解析>>

科目:gzwl 来源: 题型:

(2013乌鲁木齐二诊)如图所示,一根铁链一端用细绳悬挂于A点。为了测量这个铁链的质量,在铁链的下端用一根细绳系一质量为m的小球,待整个装置稳定后,测得两细绳与竖直方向的夹角为α和β,若tanα∶tanβ=1∶3,则铁链的质量为:

A.m

B.2m

C.3m

D.4m

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:gzwl 来源: 题型:

(2013乌鲁木齐二诊)如图所示,一根铁链一端用细绳悬挂于A点。为了测量这个铁链的质量,在铁链的下端用一根细绳系一质量为m的小球,待整个装置稳定后,测得两细绳与竖直方向的夹角为α和β,若tanα∶tanβ=1∶3,则铁链的质量为:

Am

B.2m

C.3m

D.4m

 

 

 

 

查看答案和解析>>

科目:gzwl 来源: 题型:阅读理解

第二部分  牛顿运动定律

第一讲 牛顿三定律

一、牛顿第一定律

1、定律。惯性的量度

2、观念意义,突破“初态困惑”

二、牛顿第二定律

1、定律

2、理解要点

a、矢量性

b、独立作用性:ΣF → a ,ΣFx → ax 

c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。

3、适用条件

a、宏观、低速

b、惯性系

对于非惯性系的定律修正——引入惯性力、参与受力分析

三、牛顿第三定律

1、定律

2、理解要点

a、同性质(但不同物体)

b、等时效(同增同减)

c、无条件(与运动状态、空间选择无关)

第二讲 牛顿定律的应用

一、牛顿第一、第二定律的应用

单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。

应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。

1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中(      

A、一段时间内,工件将在滑动摩擦力作用下,对地做加速运动

B、当工件的速度等于v时,它与皮带之间的摩擦力变为静摩擦力

C、当工件相对皮带静止时,它位于皮带上A点右侧的某一点

D、工件在皮带上有可能不存在与皮带相对静止的状态

解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。

较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t → 0 ,a →  ,则ΣFx   ,必然会出现“供不应求”的局面)和比较法(为什么人跳上速度不大的物体可以不发生相对滑动?因为人是可以形变、重心可以调节的特殊“物体”)

此外,本题的D选项还要用到匀变速运动规律。用匀变速运动规律和牛顿第二定律不难得出

只有当L > 时(其中μ为工件与皮带之间的动摩擦因素),才有相对静止的过程,否则没有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,试求工件到达皮带右端的时间t(过程略,答案为5.5s)

进阶练习:在上面“思考”题中,将工件给予一水平向右的初速v0 ,其它条件不变,再求t(学生分以下三组进行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、质量均为m的两只钩码A和B,用轻弹簧和轻绳连接,然后挂在天花板上,如图2所示。试问:

① 如果在P处剪断细绳,在剪断瞬时,B的加速度是多少?

② 如果在Q处剪断弹簧,在剪断瞬时,B的加速度又是多少?

解说:第①问是常规处理。由于“弹簧不会立即发生形变”,故剪断瞬间弹簧弹力维持原值,所以此时B钩码的加速度为零(A的加速度则为2g)。

第②问需要我们反省这样一个问题:“弹簧不会立即发生形变”的原因是什么?是A、B两物的惯性,且速度v和位移s不能突变。但在Q点剪断弹簧时,弹簧却是没有惯性的(没有质量),遵从理想模型的条件,弹簧应在一瞬间恢复原长!即弹簧弹力突变为零。

答案:0 ;g 。

二、牛顿第二定律的应用

应用要点:受力较少时,直接应用牛顿第二定律的“矢量性”解题。受力比较多时,结合正交分解与“独立作用性”解题。

在难度方面,“瞬时性”问题相对较大。

1、滑块在固定、光滑、倾角为θ的斜面上下滑,试求其加速度。

解说:受力分析 → 根据“矢量性”定合力方向  牛顿第二定律应用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,倾角仍为θ,要求滑块与斜面相对静止,斜面应具备一个多大的水平加速度?(解题思路完全相同,研究对象仍为滑块。但在第二环节上应注意区别。答:gtgθ。)

进阶练习1:在一向右运动的车厢中,用细绳悬挂的小球呈现如图3所示的稳定状态,试求车厢的加速度。(和“思考”题同理,答:gtgθ。)

进阶练习2、如图4所示,小车在倾角为α的斜面上匀加速运动,车厢顶用细绳悬挂一小球,发现悬绳与竖直方向形成一个稳定的夹角β。试求小车的加速度。

解:继续贯彻“矢量性”的应用,但数学处理复杂了一些(正弦定理解三角形)。

分析小球受力后,根据“矢量性”我们可以做如图5所示的平行四边形,并找到相应的夹角。设张力T与斜面方向的夹角为θ,则

θ=(90°+ α)- β= 90°-(β-α)                 (1)

对灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)两式得:ΣF = 

最后运用牛顿第二定律即可求小球加速度(即小车加速度)

答: 。

2、如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。

解说:当力的个数较多,不能直接用平行四边形寻求合力时,宜用正交分解处理受力,在对应牛顿第二定律的“独立作用性”列方程。

正交坐标的选择,视解题方便程度而定。

解法一:先介绍一般的思路。沿加速度a方向建x轴,与a垂直的方向上建y轴,如图7所示(N为斜面支持力)。于是可得两方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上两式成为

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

这是一个关于T和N的方程组,解(1)(2)两式得:T = mgsinθ + ma cosθ

解法二:下面尝试一下能否独立地解张力T 。将正交分解的坐标选择为:x——斜面方向,y——和斜面垂直的方向。这时,在分解受力时,只分解重力G就行了,但值得注意,加速度a不在任何一个坐标轴上,是需要分解的。矢量分解后,如图8所示。

根据独立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

显然,独立解T值是成功的。结果与解法一相同。

答案:mgsinθ + ma cosθ

思考:当a>ctgθ时,张力T的结果会变化吗?(从支持力的结果N = mgcosθ-ma sinθ看小球脱离斜面的条件,求脱离斜面后,θ条件已没有意义。答:T = m 。)

学生活动:用正交分解法解本节第2题“进阶练习2”

进阶练习:如图9所示,自动扶梯与地面的夹角为30°,但扶梯的台阶是水平的。当扶梯以a = 4m/s2的加速度向上运动时,站在扶梯上质量为60kg的人相对扶梯静止。重力加速度g = 10 m/s2,试求扶梯对人的静摩擦力f 。

解:这是一个展示独立作用性原理的经典例题,建议学生选择两种坐标(一种是沿a方向和垂直a方向,另一种是水平和竖直方向),对比解题过程,进而充分领会用牛顿第二定律解题的灵活性。

答:208N 。

3、如图10所示,甲图系着小球的是两根轻绳,乙图系着小球的是一根轻弹簧和轻绳,方位角θ已知。现将它们的水平绳剪断,试求:在剪断瞬间,两种情形下小球的瞬时加速度。

解说:第一步,阐明绳子弹力和弹簧弹力的区别。

(学生活动)思考:用竖直的绳和弹簧悬吊小球,并用竖直向下的力拉住小球静止,然后同时释放,会有什么现象?原因是什么?

结论——绳子的弹力可以突变而弹簧的弹力不能突变(胡克定律)。

第二步,在本例中,突破“绳子的拉力如何瞬时调节”这一难点(从即将开始的运动来反推)。

知识点,牛顿第二定律的瞬时性。

答案:a = gsinθ ;a = gtgθ 。

应用:如图11所示,吊篮P挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳被烧断瞬间,P、Q的加速度分别是多少?

解:略。

答:2g ;0 。

三、牛顿第二、第三定律的应用

要点:在动力学问题中,如果遇到几个研究对象时,就会面临如何处理对象之间的力和对象与外界之间的力问题,这时有必要引进“系统”、“内力”和“外力”等概念,并适时地运用牛顿第三定律。

在方法的选择方面,则有“隔离法”和“整体法”。前者是根本,后者有局限,也有难度,但常常使解题过程简化,使过程的物理意义更加明晰。

对N个对象,有N个隔离方程和一个(可能的)整体方程,这(N + 1)个方程中必有一个是通解方程,如何取舍,视解题方便程度而定。

补充:当多个对象不具有共同的加速度时,一般来讲,整体法不可用,但也有一种特殊的“整体方程”,可以不受这个局限(可以介绍推导过程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系统外力的矢量和,等式右边也是矢量相加。

1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?

解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。

答案:N = x 。

思考:如果水平面粗糙,结论又如何?

解:分两种情况,(1)能拉动;(2)不能拉动。

第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。

第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μMg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。

答:若棒仍能被拉动,结论不变。

若棒不能被拉动,且F = μMg时(μ为棒与平面的摩擦因素,l为小于L的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N = 〔x -〈L-l〉〕。

应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2 ,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2 ,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?

解:略。

答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。

2、如图15所示,三个物体质量分别为m1 、m2和m3 ,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?

解说:

此题对象虽然有三个,但难度不大。隔离m2 ,竖直方向有一个平衡方程;隔离m1 ,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。

答案:F =  。

思考:若将质量为m3物体右边挖成凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。

解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:

 = m2a

隔离m,仍有:T = m1a

解以上两式,可得:a = g

最后用整体法解F即可。

答:当m1 ≤ m2时,没有适应题意的F′;当m1 > m2时,适应题意的F′=  。

3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?

解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。

法二,“新整体法”。

据Σ= m1 + m2 + m3 + … + mn ,猫和棒的系统外力只有两者的重力,竖直向下,而猫的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的连接体

当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。

解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、

1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。

解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。

(学生活动)定型判断斜面的运动情况、滑块的运动情况。

位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。

(学生活动)这两个加速度矢量有什么关系?

沿斜面方向、垂直斜面方向建x 、y坐标,可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔离滑块和斜面,受力图如图20所示。

对滑块,列y方向隔离方程,有:

mgcosθ- N = ma1y     ③

对斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(学生活动)思考:如何求a1的值?

解:a1y已可以通过解上面的方程组求出;a1x只要看滑块的受力图,列x方向的隔离方程即可,显然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后据a1 = 求a1 。

答:a1 =  。

2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。

解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。

(学生活动)思考:为什么题意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)

定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:

S1x + b = S cosθ                   ①

设全程时间为t ,则有:

S = at2                          ②

S1x = a1xt2                        ③

而隔离滑套,受力图如图23所示,显然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引进动力学在非惯性系中的修正式 Σ* = m (注:*为惯性力),此题极简单。过程如下——

以棒为参照,隔离滑套,分析受力,如图24所示。

注意,滑套相对棒的加速度a是沿棒向上的,故动力学方程为:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒为参照,滑套的相对位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二讲 配套例题选讲

教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。

例题选讲针对“教材”第三章的部分例题和习题。

查看答案和解析>>

科目:gzwl 来源: 题型:

精英家教网如图,一根长为L=1m的细绳系一质量为m=2kg的小球(半径不计)悬挂于O点,释放后小球在竖直平面内做圆周运动,摆动到距离地面高为H=0.8m的最低点时绳子恰好断开.经测量知水平射程为S=1.6m,取g=10m/s2.求:
(1)绳子恰好断开时小球的速度;
(2)细绳能承受的最大拉力F为多少牛顿?

查看答案和解析>>

科目:gzwl 来源: 题型:

如图13-3-7所示,用绝缘细绳拴一个质量为m的小球,小球在竖直向下的场强为E的匀强电场中的竖直平面内做匀速圆周运动,则小球带______电荷,所带电荷量为______.

查看答案和解析>>

科目:gzwl 来源:2008年海淀区高三物理适应性练习题 题型:021

如图所示,在水平方向的匀强电场中的O点,用长为l的轻、软绝缘细线悬挂一质量为m的带电小球,当小球位于B点时处于静止状态,此时细线与竖直方向(即OA方向)成角.现将小球拉至细线与竖直方向成2角的C点,由静止将小球释放.若重力加速度为g,则对于此后小球的受力和运动情况,下列判断中正确的是

A.小球所受电场力的大小为mgtan

B.小球从C点到B点的运动时间可能等于π

C.小球可能能到达A点,且到A点时的速度不为零

D.小球运动到A点时所受绳的拉力可能最大

查看答案和解析>>

科目:gzwl 来源: 题型:

精英家教网如图所示,在水平向右的匀强电场中,用长为L的绝缘细绳将一个质量为m带电荷量为q的带电小球悬挂于O点,平衡时,小球位于B点,此时绳与竖直方向的夹角为θ(θ<45°).已知重力加速度为g.求:
(1)小球的电性以及匀强电场的电场强度E;
(2)小球静止在B点时受到绳的拉力大小;
(3)若将小球从C点由静止释放则小球能够获得最大速度为多少.

查看答案和解析>>

科目:gzwl 来源: 题型:

一辆小车在水平路面上行驶,车内用细绳悬挂一质量为m=1kg的摆球.若细绳的最大张力为FT=10
5
N,当摆球与小车相对静止时,细绳与竖直方向的夹角为θ,则cosθ的值可能是(  )
A、
5
5
B、
3
5
C、
2
5
D、
1
5

查看答案和解析>>

科目:gzwl 来源: 题型:

一个底面粗糙、质量为M=5kg的劈放在粗糙的水平面上,劈的斜面光滑且与水平面成30°角;现用一端固定的轻绳系一质量为m=3kg的小球,小球放在斜面上,小球静止时轻绳与竖直方向的夹角也为30°,如图所示,( g=10m/s2)试求:
(1)当劈静止时绳子的拉力大小.
(2)若地面对劈的最大静摩擦力等于地面对劈支持力的k倍,为使整个系统静止,k值必须满足什么条件?

查看答案和解析>>