精英家教网 > 试题搜索列表 >已知a=(2 1)为矩阵A=(1a-14)

已知a=(2 1)为矩阵A=(1a-14)答案解析

科目:gzsx 来源: 题型:

(2011•闵行区三模)已知椭圆
x2
4
+y2=1
中心为O,右顶点为M,过定点D(t,0)(t≠±2)作直线l交椭圆于A、B两点.
(1)若直线l与x轴垂直,求三角形OAB面积的最大值;
(2)若t=
6
5
,直线l的斜率为1,求证:∠AMB=90°;
(3)在x轴上,是否存在一点E,使直线AE和BE的斜率的乘积为非零常数?若存在,求出点E的坐标和这个常数;若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知n为正整数,规定f1(x)=f(x),fn+1(x)=f(fn(x)),已知f(x)=
2(1-x),0≤x≤1
x-1,
 1<x≤2

(1)解不等式f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2007•惠州模拟)设n为正整数,规定:fn(x)=
f{f[…f(x)]}
n个f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2

(1)解不等式f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含8个元素.

查看答案和解析>>

科目:gzsx 来源: 题型:

设n为正整数,规定:fn(x)=
f{f[…f(x)…]}
n个f
,已知f(x)=
2(1-x)
x-1
(0≤x≤1)
(1<x≤2)

(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)探求f2009(
8
9
)

(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含有8个元素.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知双曲线
x2
24tanα
-
y2
16cotα
=1(α为锐角)和圆(x-m)2+y2=r2相切于点A(4
3
,4),求α,m,r的值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知椭圆
x2
4
+y2=1
中心为O,右顶点为M,过定点D(t,0)(t≠±2)作直线l交椭圆于A、B两点.
(1)若直线l与x轴垂直,求三角形OAB面积的最大值;
(2)若t=
6
5
,直线l的斜率为1,求证:∠AMB=90°;
(3)直线AM和BM的斜率的乘积是否为非零常数?请说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知复数z=
2+i
x-i
为纯虚数,其中i虚数单位,则实数x的值为(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

(2009•卢湾区一模)将奇函数的图象关于原点(即(0,0))对称这一性质进行拓广,有下面的结论:
①函数y=f(x)满足f(a+x)+f(a-x)=2b的充要条件是y=f(x)的图象关于点(a,b)成中心对称.
②函数y=f(x)满足F(x)=f(x+a)-f(a)为奇函数的充要条件是y=f(x)的图象关于点(a,f(a))成中心对称(注:若a不属于x的定义域时,则f(a)不存在).
利用上述结论完成下列各题:
(1)写出函数f(x)=tanx的图象的对称中心的坐标,并加以证明.
(2)已知m(m≠-1)为实数,试问函数f(x)=
x+m
x-1
的图象是否关于某一点成中心对称?若是,求出对称中心的坐标并说明理由;若不是,请说明理由.
(3)若函数f(x)=(x-
2
3
)(|x+t|+|x-3|)-4
的图象关于点(
2
3
,f(
2
3
))
成中心对称,求t的值.

查看答案和解析>>

科目:gzsx 来源: 题型:

设n为正整数,规定:fn(x)=
f{f[…f(x)…]}
n个f
,已知f(x)=
2(1-x)(0≤x≤1)
x-1(1<x≤2)

(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求f2008(
8
9
)
的值.

查看答案和解析>>

科目:gzsx 来源:2013届湖北省高二上学期期中考试理科数学 题型:选择题

已知x2+y 2 = 1 ,若x + y -k ≥0对符合条件一切x 、y都成立,则实数k的最大值为(  )

    A.          B.0            C.-             D.1

 

查看答案和解析>>

科目:gzsx 来源:2010-2011学年宁夏高三第三次月考理科数学试卷 题型:选择题

已知向量=(-2,1),=(-3,0),则方向上的投影为(   )

A.-2            B. C.2          D.-

 

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

将奇函数的图象关于原点(即(0,0))对称这一性质进行拓广,有下面的结论:
①函数y=f(x)满足f(a+x)+f(a-x)=2b的充要条件是y=f(x)的图象关于点(a,b)成中心对称.
②函数y=f(x)满足F(x)=f(x+a)-f(a)为奇函数的充要条件是y=f(x)的图象关于点(a,f(a))成中心对称(注:若a不属于x的定义域时,则f(a)不存在).
利用上述结论完成下列各题:
(1)写出函数f(x)=tanx的图象的对称中心的坐标,并加以证明.
(2)已知m(m≠-1)为实数,试问函数数学公式的图象是否关于某一点成中心对称?若是,求出对称中心的坐标并说明理由;若不是,请说明理由.
(3)若函数数学公式的图象关于点数学公式成中心对称,求t的值.

查看答案和解析>>

科目:gzsx 来源:不详 题型:解答题

设n为正整数,规定:fn(x)=
f{f[…f(x)…]}
n个f
,已知f(x)=
2(1-x)(0≤x≤1)
x-1(1<x≤2)

(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求f2008(
8
9
)
的值.

查看答案和解析>>

科目:gzsx 来源:福建 题型:解答题

已知双曲线
x2
24tanα
-
y2
16cotα
=1(α为锐角)和圆(x-m)2+y2=r2相切于点A(4
3
,4),求α,m,r的值.

查看答案和解析>>

科目:gzsx 来源:惠州模拟 题型:解答题

设n为正整数,规定:fn(x)=
f{f[…f(x)]}
n个f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2

(1)解不等式f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含8个元素.

查看答案和解析>>

科目:gzsx 来源:卢湾区一模 题型:解答题

将奇函数的图象关于原点(即(0,0))对称这一性质进行拓广,有下面的结论:
①函数y=f(x)满足f(a+x)+f(a-x)=2b的充要条件是y=f(x)的图象关于点(a,b)成中心对称.
②函数y=f(x)满足F(x)=f(x+a)-f(a)为奇函数的充要条件是y=f(x)的图象关于点(a,f(a))成中心对称(注:若a不属于x的定义域时,则f(a)不存在).
利用上述结论完成下列各题:
(1)写出函数f(x)=tanx的图象的对称中心的坐标,并加以证明.
(2)已知m(m≠-1)为实数,试问函数f(x)=
x+m
x-1
的图象是否关于某一点成中心对称?若是,求出对称中心的坐标并说明理由;若不是,请说明理由.
(3)若函数f(x)=(x-
2
3
)(|x+t|+|x-3|)-4
的图象关于点(
2
3
,f(
2
3
))
成中心对称,求t的值.

查看答案和解析>>

科目:gzsx 来源:2010年上海市卢湾区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

将奇函数的图象关于原点(即(0,0))对称这一性质进行拓广,有下面的结论:
①函数y=f(x)满足f(a+x)+f(a-x)=2b的充要条件是y=f(x)的图象关于点(a,b)成中心对称.
②函数y=f(x)满足F(x)=f(x+a)-f(a)为奇函数的充要条件是y=f(x)的图象关于点(a,f(a))成中心对称(注:若a不属于x的定义域时,则f(a)不存在).
利用上述结论完成下列各题:
(1)写出函数f(x)=tanx的图象的对称中心的坐标,并加以证明.
(2)已知m(m≠-1)为实数,试问函数的图象是否关于某一点成中心对称?若是,求出对称中心的坐标并说明理由;若不是,请说明理由.
(3)若函数的图象关于点成中心对称,求t的值.

查看答案和解析>>

科目:gzsx 来源:宝山区模拟 题型:解答题

设n为正整数,规定:fn(x)=
f{f[…f(x)…]}
n个f
,已知f(x)=
2(1-x)
x-1
(0≤x≤1)
(1<x≤2)

(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)探求f2009(
8
9
)

(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含有8个元素.

查看答案和解析>>

科目:gzsx 来源:不详 题型:单选题

已知复数z=
2+i
x-i
为纯虚数,其中i虚数单位,则实数x的值为(  )
A.-
1
2
B.
1
2
C.2D.1

查看答案和解析>>

科目:gzsx 来源: 题型:

已知点M(2,3),P为抛物线上的一动点,F为焦点,则PF+PM取最小值时,点P的坐标是

A. (0,1)           B. (1,1)        C. (2,1)           D.(3,)

查看答案和解析>>