精英家教网 > 初中数学 > 题目详情
7.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将△ABC沿直线BC向右平移2个单位得到△DEF,连接AD,则下列结论:
①AC∥DF,AC=DF
②ED⊥DF
③四边形ABFD的周长是16
④点B到线段DF的距离是4.2
其中结论正确的个数有(  )
A.1个B.2个C.3个D.4个

分析 直接根据平移的性质可对①进行判断;根据平移的性质得∠EDF=∠BAC=90°,则可对②进行判断;根据平移的性质得AD=BE=2,EF=BC=5,则可计算出四边形ABFD的周长.从而对③进行判断;延长BA交FD的延长线于H,如图,根据平移的性质证明BH⊥CH,再证明△HAD∽△HBF,利用相似比计算出AH,然后计算出BH即可对④进行判断.

解答 解:∵△ABC沿直线BC向右平移2个单位得到△DEF,
∴AC∥DF,AC=DF=4,所以①正确;
∠EDF=∠BAC=90°,
∴DE⊥DF,所以②正确;
∵△ABC沿直线BC向右平移2个单位得到△DEF,
∴AD=BE=2,EF=BC=5,
∴四边形ABFD的周长=AB+BE+EF+DF+AD=3+2+5+4+2=16,所以③正确,
延长BA交FD的延长线于H,如图,

∵AC∥DF,AB⊥AC,
∴BH⊥CH,
∵AD∥BF,
∴△HAD∽△HBF,
∴$\frac{AH}{BH}$=$\frac{AD}{BF}$,即$\frac{AH}{AH+3}$=$\frac{2}{2+5}$,解得AH=1.2,
∴BH=BA+AH=3+1.2=4.2,
即点B到线段DF的距离是4.2,所以④正确.
故选D.

点评 本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了相似三角形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.约分$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+ab}$=$\frac{a-b}{a}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.因式分解:2(a+b)2-8(a-b)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,点A,B坐标分别为(8,0)、(0,6),点C是线段AB的中点,点P是射线BA上一动点,过P作PD⊥y轴于D,PE⊥x轴于E,设OE=t,矩形OEPD与△POC重合部分的面积为S.
(1)求线段OC所在直线的解析式;
(2)求S与t的函数关系式;
(3)当点P在线段AB上时,求S的最大值;
(4)若S=2,则t的值有4个.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图是用火柴棍摆成的边长分别是1,2,3根火柴棍时的正方形,当边长为10根火柴棍时,摆出的正方形所用的火柴棍的根数为(  )
A.220B.200C.120D.100

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:(-3)2+$\sqrt{4}$-(π-3.14)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.设函数y1=(x-k)2+k和y2=(x+k)2-k的图象相交于点A,函数y1,y2的图象的顶点分别为B和C.
(1)画出当k=0,1时,函数y1,y2在直角坐标系中图象;
(2)观察(1)中所画函数图象的顶点位置,发现它们均分布在某个函数的图象上,请写出这个函数的解析式,并说明理由;
(3)设A(x,y),求证:x是与k无关的常数,并求y的最小值;
(4)设直线l:y=ax+1的图象分别与函数y1,y2的图象交于A,B和C,D.若AB=CD,写出所有实数a.(直接写出a的值即可,不要求写理由)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)先化简,再求值:5(x2-2)-2(2x2+4),其中x=-2;
(2)求直线y=2x+1与抛物线y=3x2+3x-1的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1,在矩形ABCD中,AB=8,AD=6,P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.
(1)当x=4时,PQ∥AD;
(2)当线段PQ的垂直平分线与BC边相交时,设交点为E,设BP=y求y与x的函数关系式,并直接写出x的取值范围;
(3)当线段PQ的垂直平分线与BC边相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,S关于x的函数关系式为S=$\frac{4}{3}$(x-4)2+12($\frac{7}{4}$≤x≤$\frac{25}{4}$).

查看答案和解析>>

同步练习册答案