精英家教网 > 初中数学 > 题目详情
如图,以平行四边形ABCD的边AB、BC、CD、DA为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH,当∠ADC=α(0°<α<90°)时,有以下结论:①∠GCF=180°-a;②∠HAE=90°+a;③HE=HG;④四边形EFGH是正方形;⑤四边形EFGH是菱形.则结论正确的是(  )
分析:根据平行四边形性质得出∠ABC=∠ADC=α,∠BAD=∠BCD,AB=CD,AD=BC,AD∥BC,AB∥CD,根据等腰直角三角形得出BE=AE=CG=DG,AH=DH=BF=CF,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,求出∠HAE=∠HDG=∠FCG=∠FBE=90°+α,证△FBE≌△HAE≌△HDG≌△FCG,推出∠BFE=∠GFC,EF=EH=HG=GF,求出∠EFG=90°,根据正方形性质得出即可.
解答:解:∵四边形ABCD是平行四边形,
∴∠ABC=∠ADC=α,∠BAD=∠BCD,AB=CD,AD=BC,AD∥BC,AB∥CD,
∵平行四边形ABCD的边AB、BC、CD、DA为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,
∴BE=AE=CG=DG,AH=DH=BF=CF,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,
∵AB∥CD,
∴∠BAD=∠BCD=180°-α,
∴∠EAH=360°-45°-45°-(180°-α)=90°+α,∠GCF=360°-45°-45°-(180°-α)=90°+α,∴①错误;②正确;
∠HDG=45°+45°+α=90°+α,∠FBE=45°+45°+α=90°+α,
∴∠HAE=∠HDG=∠FCG=∠FBE,
在△FBE、△HAE、△HDG、△FCG中,
BF=AH=DH=CF
∠FBE=∠HAE=∠HDG=∠FCG
BE=AE=DG=CG

∴△FBE≌△HAE≌△HDG≌△FCG(SAS),
∴∠BFE=∠GFC,EF=EH=HG=GF,
∴四边形EFGH是菱形,
∵∠BFC=90°=∠BFE+∠EFC=∠GFC+∠CFE,
∴∠EFG=90°,
∴四边形EFGH是正方形,∴③④⑤正确;
即只有选项D正确.
故选D.
点评:本题考查了等腰直角三角形,全等三角形的性质和判定,正方形的判定,平行四边形的性质,菱形的判定的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,以平行四边形ABCD的一边AB为直径的⊙O交BC、BD于Q、P点,AQ交BD于E点,若精英家教网BP=PD.
(1)求证:平行四边形ABCD为菱形;
(2)若AE=4,EQ=2,求梯形AQCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,以平行四边形ABCD的对称中心为坐标原点,建立平面直角坐标系,A点坐标为(-4,3),且AD与x轴平行,AD=6,求其他各点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以平行四边形ABCD的一边AB为直径作⊙O,若⊙O过点C,且∠AOC=80°,则∠BAD等于(  )
A、160°B、145°C、140°D、135°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以平行四边形ABCD(边长均大于2)的四个顶点为圆心,1为半径作弧,则图中阴影部分的面积和是
π
π
.(结果中可保留π)

查看答案和解析>>

同步练习册答案