精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=ax2+bx+2与x轴交于A(-4,0)、B(1,0)两点,与y轴交于点C.
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)在抛物线的对称轴上是否存在点P,使△PBC的周长最小?若存在,请直接写出△PBC周长的最小值与点P的坐标;若不存在,请说明理由.

解:(1)∵抛物线y=ax2+bx+2与x轴交于A(-4,0)、B(1,0)两点,

解得
∴抛物线的解析式为y=-x2-x+2,
∵y=-x2-x+2=-(x2+3x+-)+2=-(x+2+
∴顶点D的坐标为(-);

(2)△ABC是直角三角形.
证明如下:当x=0时y=2,∴C(0,2),OC=2,
∵A(-4,0)、B(1,0),
∴OA=4,OB=1,AB=5,
∴AB2=25,
在Rt△AOC与Rt△BOC中,
AC2=OA2+OC2=20,BC2=OC2+OB2=5,
∴AC2+BC2=AB2
∴△ABC是直角三角形;

(3)存在.
∵A、B关于对称轴直线x=-对称,
∴AC与对称轴的交点即为点P,
根据勾股定理,AC==2
∵BC2=OC2+OB2=5,
∴BC=
∴最小周长=PB+PC+BC=AP+PC+BC=AC+BC=2+=3
设直线AC的解析式为y=kx+m,

解得
所以,直线AC的解析式为y=x+2,
x=-时,y=×(-)+2=
所以,点P的坐标为().
分析:(1)把点A、B的坐标代入函数解析式,利用待定系数法求二次函数解析式解答即可,把函数解析式整理成顶点式形式,然后写出顶点坐标;
(2)根据二次函数解析式求出点C的坐标,然后求出OA、OB、OC的长,再求出AB,利用勾股定理列式求出BC2、AC2,然后根据勾股定理逆定理解答;
(3)根据轴对称确定最短路线问题,AC与对称轴的交点即为所求的点P,利用勾股定理列式求出AC的长,则周长最小值=AC+BC,再求出直线AC的解析式,然后把顶点的横坐标代入解析式计算求出y值,即可得到点P的坐标.
点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,顶点坐标的求解,勾股定理逆定理的应用,利用轴对称确定最短路线问题,(3)根据轴对称的性质确定出点P的位置是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案