精英家教网 > 初中数学 > 题目详情

某公司营销A,B两种产品,根据市场调研,发现如下信息:
信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系
当x=1时,y=1.4;当x=3时,y=3.6。
信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系
根据以上信息,解答下列问题:
(1)求二次函数解析式;
(2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少?

(1)
(2)购进A产品6吨,购进B产品4吨,销售A,B两种产品获得的利润之和最大,最大利润是6.6万元。

解析分析:(1)将(1,1.4),(3,3.6)代入,解方程组求出a、b的值即可得二次函数解析式。
(2)建立销售A,B两种产品获得的利润之和与购进A产品数量之间的函数关系式,应用二次函数的最值原理求解。
解:(1)将(1,1.4),(3,3.6)代入,得
,解得
∴二次函数解析式为
(2)设购进A产品m吨,购进B产品10-m吨,销售A,B两种产品获得的利润之和为W万元。则

,∴当m=6时,W有最大值6.6。
∴购进A产品6吨,购进B产品4吨,销售A,B两种产品获得的利润之和最大,最大利润是6.6万元。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.

(1)求抛物线的解析式;
(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;
(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P在抛物线上,当SPAB≤6时,求点P的横坐标x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,在?ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.

(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).
(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.
(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.
(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C.
(1)求抛物线的函数表达式;
(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;
(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.
①判断四边形OAEB的形状,并说明理由;
②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知:△ABC为边长是的等边三角形,四边形DEFG为边长是6的正方形.现将等边△ABC和正方形DEFG按如图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,△ABC从图1的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点C与点F重合时暂停运动,设△ABC的运动时间为t秒(t≥0).

(1)在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,请直接写出S与t之间的函数关系式;
(2)如图2,当点A与点D重合时,作∠ABE的角平分线BM交AE于M点,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形.如果存在,请求出线段EH的长度;若不存在,请说明理由.
(3)如图3,若四边形DEFG为边长为的正方形,△ABC的移动速度为每秒个单位长度,其余条件保持不变.△ABC开始移动的同时,Q点从F点开始,沿折线FG﹣GD以每秒个单位长度开始移动,△ABC停止运动时,Q点也停止运动.设在运动过程中,DE交折线BA﹣AC于P点,则是否存在t的值,使得PC⊥EQ,若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线

(1)求抛物线的解析式;
(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线的顶点A(2,0),与y轴的交点为B(0,-1).

(1)求抛物线的解析式;
(2)在对称轴右侧的抛物线上找出一点C,使以BC为直径的圆经过抛物线的顶点A.并求出点C的坐标以及此时圆的圆心P点的坐标.
(3)在(2)的基础上,设直线x=t(0<t<10)与抛物线交于点N,当t为何值时,△BCN的面积最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

反比例函数y=和正比例函数y=mx的图象如图所示.由此可以得到方程=mx的实数根为(     )

A.x=-2 B.x=1 C.x1=2,x2=-2 D.x1=1,x2=-2

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知点A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函数y= 的图象上,则y1、y2、y3的大小关系是(  )

A.y3<y1<y2
B.y1<y2<y3
C.y2<y1<y3
D.y3<y2<y1

查看答案和解析>>

同步练习册答案