精英家教网 > 初中数学 > 题目详情

如图,二次函数数学公式的图象与x轴相交于点A、B,与y轴相交于点C,连接AC.
(1)求证:△AOC∽△COB.
(2)过点C作CD∥x轴交二次函数数学公式的图象于点D,若点M在线段AB上以每秒1个单位的速度由A向B运动,同时点N在线段CD上也以每秒1个单位的速度由点D向点C运动,连接线段MN,设运动时间为t秒.(0<t≤6)
①是否存在时刻t,使MN=AC?若存在,求出t的值;若不存在,请说明理由.
②是否存在时刻t,使MN⊥BC?若存在,直接写出t的值;若不存在,请说明理由.

(1)证明:令y=0,得:
解得:x1=2,x2=8,
令x=0,得:y=-4,
∴A(2,0),B(8,0),C(0,-4),


又∵∠AOC=∠COB,
∴△AOC∽△COB;

(2)解:①存在,t=5或3,
由题意,得:AM=DN=t,
∵A(2,0),B(8,0),
∴AB=8-2=6,
∴MB=6-t
∵CD∥x轴,点C(0,-4),
∴点D的纵坐标为-4,
∵点D在二次函数的图象上,

∴x1=0,x2=10,
∴D(10,-4),
∴CD=10,CN=10-t,
Ⅰ当AM=CN,即四边形ACNM是平行四边形时,MN=AC,
此时,t=10-t,
∴t=5,
Ⅱ连接BD,当MB=DN,即四边形MNDB是平行四边形时,
可证:MN=BD=AC,
此时,6-t=t,
∴t=3,
所以,当t=5或3时,MN=AC.
②是否存在时刻t,使MN⊥BC?若存在,直接写出t的值;若不存在,请说明理由
BC所在直线的斜率:=
由题意点M(2+t,0),N(10-t,-4),
若MN所在直线的斜率-2,

解得t=3,
在其范围故存在.
分析:(1)由二次函数求得其根从而得到三角形相应边的长度,证明三角形的相似;
(2)①由题意得AM=DN=t,有点A,B求得AB,MB,同理求得CD,CN,由当AM=CN,即四边形ACNM是平行四边形时,MN=AC,而求得t,连接BD,当MB=DN,即四边形MNDB是平行四边形时,得MN=BD=AC,从而求得.②若MN⊥BC,则两线段所在的直线的斜率互为负倒数,而求得.
点评:本题考查了二次函数的综合运用,考查了二次函数与一次函数的结合,形成的三角形相似问题;以及在抛物线上出现移动的变量,结合起来的求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知在直角坐标平面内,点A的坐标为(3,0),第一象限内的点P在直线y=2x上,∠PAO=45度.精英家教网
(1)求点P的坐标;
(2)如果二次函数的图象经过P、O、A三点,求这个二次函数的解析式,并写出它的图象的顶点坐标M;
(3)如果将第(2)小题中的二次函数的图象向上或向下平移,使它的顶点落在直线y=2x上的点Q处,求△APM与△APQ的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知在直角坐标平面内,点A的坐标为(3,0),第一象限内的点P在直线y=2x上,∠PAO=45度.
(1)求点P的坐标;
(2)如果二次函数的图象经过P、O、A三点,求这个二次函数的解析式,并写出它的图象的顶点坐标M;
(3)如果将第(2)小题中的二次函数的图象向上或向下平移,使它的顶点落在直线y=2x上的点Q处,求△APM与△APQ的面积之比.

查看答案和解析>>

科目:初中数学 来源:2011-2012年北京市华夏女子中学九年级第一学期期中考试数学卷 题型:解答题

如图是二次函数的图象,其顶点坐标为M(1,-4).

【小题1】(1)求出图象与轴的交点A,B的坐标;
【小题2】(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由;
【小题3】(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.

查看答案和解析>>

科目:初中数学 来源:2013年上海市中考数学模拟试卷(二)(解析版) 题型:解答题

如图,已知在直角坐标平面内,点A的坐标为(3,0),第一象限内的点P在直线y=2x上,∠PAO=45度.
(1)求点P的坐标;
(2)如果二次函数的图象经过P、O、A三点,求这个二次函数的解析式,并写出它的图象的顶点坐标M;
(3)如果将第(2)小题中的二次函数的图象向上或向下平移,使它的顶点落在直线y=2x上的点Q处,求△APM与△APQ的面积之比.

查看答案和解析>>

科目:初中数学 来源:2011年上海市浦东新区中考数学二模试卷(解析版) 题型:解答题

如图,已知在直角坐标平面内,点A的坐标为(3,0),第一象限内的点P在直线y=2x上,∠PAO=45度.
(1)求点P的坐标;
(2)如果二次函数的图象经过P、O、A三点,求这个二次函数的解析式,并写出它的图象的顶点坐标M;
(3)如果将第(2)小题中的二次函数的图象向上或向下平移,使它的顶点落在直线y=2x上的点Q处,求△APM与△APQ的面积之比.

查看答案和解析>>

同步练习册答案