精英家教网 > 初中数学 > 题目详情
如图,在三角板ABC中,∠C=90°,∠B=30°,O为AB上一点,⊙O的半径为1,现将三角板平移,使AC与⊙O相切,则AO=______.
设AC与⊙O相切于点D,连接OD.
在直角△ABC中,∠B=90°-∠A=90°-30°=60°.
∵AC是⊙O的切线,
∴OD⊥AC,且OD=1.
∴在直角△OAD中,sinA=
OD
OA

∴OA=
OD
sinA
=
1
sin60°
=
1
3
2
=
2
3
3

故答案是:
2
3
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,等边△ABC的面积为S,⊙O是它的外接圆,点P是
BC
的中点.
(1)试判断过点C所作⊙O的切线与直线AB是否相交,并证明你的结论;
(2)设直线CP与AB相交于点D,过点B作BE⊥CD,垂足为E,证明BE是⊙O的切线,并求△BDE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD,垂足为C,若AB=2cm,半圆O的半径为2cm,则BC的长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠BAC=90度.BM平分∠ABC交AC于M,以A为圆心,AM为半径作⊙A交BM于N,AN的延长线交BC于D,直线AB交⊙A于P,K两点,作MT⊥BC于T.
(1)求证:AK=MT;
(2)求证:AD⊥BC;
(3)当AK=BD时,求证:
BN
BP
=
AC
BM

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.
(1)求证:PB是⊙O的切线;
(2)求证:AQ•PQ=OQ•BQ;
(3)设∠AOQ=α,若cosα=
4
5
,OQ=15,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,∠BAC=90°,AC=AB,直线l与以AB为直径的圆相切于点B,点E是圆上异于A、B的任意一点.直线AE与l相交于点D.
(1)如果AD=10,BD=6,求DE的长;
(2)连接CE,过E作CE的垂线交直线AB于F.当点E在什么位置时,相应的F位于线段AB上、位于BA的延长线上、位于AB的延长线上(写出结果,不要求证明).无论点E如何变化,总有BD=BF.请你就上述三种情况任选一种说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA切⊙O于点A,PBC是经过O点的割线,若∠P=30°,则弧AB的度数是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在12×7的网格图中(每个小正方形的边长均为1个单位).⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B外切,那么⊙A位置需向右平移多少个单位(  )
A.2B.8C.2或8D.2或4或6或8

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,两等圆⊙O1、⊙O2相交于A、B两点,且两圆互相过圆心,过B作任一直线,分别交⊙O1、⊙O2于C、D两点,连接AC、AD.
(1)试猜想△ACD的形状,并给出证明.
(2)若已知条件中两圆不一定互相过圆心,试猜想三角形的形状是怎样的?证明你的结论.
(3)若⊙O1、⊙O2是两个不相等的圆,半径分别为R和r,那么(2)中的猜想还成立吗?若成立,给出证明;若不成立,那么AC和AD的长与两圆半径有什么关系?说明理由.

查看答案和解析>>

同步练习册答案