精英家教网 > 初中数学 > 题目详情
(2006•济宁)如图1,平行四边形ABCD的对角线AC,BD交于点P,E为BC的中点,过E点的圆O与BD相切于点P,圆O与直线AC,BC分别交于点F,G.
(1)求证:△PCD∽△EPF;
(2)如果AB=AD,AC=6,BD=8(如图2).求圆O的直径.

【答案】分析:(1)由弦切角定理得,∠DPC=∠PEF,由平行四边形的性质和点E是BC的中点得PE∥CD,已知了∠CPE=∠PCD,可证得△PCD∽△EPF.
(2)由AB=AD,可证得平行四边形ABCD是菱形,则它的对角线互相垂直平分;根据勾股定理可求出菱形的边长.由于E是BC中点,可求得BE、EC的长,再根据切割线定理,可求出BG的长,进而可求出CG的长.在⊙O中,根据相交弦定理,可得PC•CF=EC•CG,其中PC、EC、CG的长已求得,由此可求出CF的长.也就求出了PF即圆的直径.
解答:(1)证明:∵四边形ABCD是平行四边形,
∴BP=DP,
又∵BE=CE,
∴PE∥DC,
∴∠CPE=∠PCD,
∵BD切⊙O于P,
∴∠DPC=∠PEF,
∴△PCD∽△EPF;

(2)解:∵平行四边形ABCD中,AB=AD,
∴平行四边形ABCD为菱形.
∴AC⊥BD,PB=
BD=×8=4,PC=
AC=×6=3,
∴BC=5,
∴BE=CE=
∵⊙O切BD于P,AC⊥BD,
∴PF为⊙O的直径,
∵PE2=BE•BG,


∴OG=BG-BC=
∵PC•CF=EC•CG,


∴⊙O的直径为
点评:本题综合利用了平行四边形的判定和性质,菱形的判定和性质,切割线定理,圆周角定理,相交弦定理求解.
练习册系列答案
相关习题

科目:初中数学 来源:2011年浙江省宁波市北仑区中考数学一模试卷(解析版) 题型:解答题

(2006•济宁)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B.P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C.过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N.
(1)当点C在第一象限时,求证:△OPM≌△PCN;
(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC能否成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年重庆市垫江实验中学九年级(下)第一次月考数学试卷(解析版) 题型:解答题

(2006•济宁)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B.P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C.过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N.
(1)当点C在第一象限时,求证:△OPM≌△PCN;
(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC能否成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省温州市中考数学模拟检测(5)(解析版) 题型:解答题

(2006•济宁)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B.P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C.过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N.
(1)当点C在第一象限时,求证:△OPM≌△PCN;
(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC能否成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省苏州市张家港市中考数学模拟练习试卷(3)(解析版) 题型:解答题

(2006•济宁)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B.P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C.过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N.
(1)当点C在第一象限时,求证:△OPM≌△PCN;
(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC能否成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年山东省济宁市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•济宁)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B.P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C.过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N.
(1)当点C在第一象限时,求证:△OPM≌△PCN;
(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC能否成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.

查看答案和解析>>

同步练习册答案