| 时间t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
| 日销售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
分析 (1)设y=kt+b,利用待定系数法即可解决问题.
(2)日利润=日销售量×每公斤利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.
解答 解:(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:
$\left\{\begin{array}{l}{k+b=118}\\{3k+b=114}\end{array}\right.$
解得$\left\{\begin{array}{l}{k=-2}\\{b=120}\end{array}\right.$,
∴y=-2t+120.
将t=30代入上式,得:y=-2×30+120=60.
所以在第30天的日销售量是60kg.
(2)设利润为W元
当1≤t≤14时,W=(p-20)y=-$\frac{1}{2}$t2+10t+1200=-$\frac{1}{2}$(t-10)2+1250,
当t=10时,W最大=1250元
当25≤t≤48时,W=(p-20)y=t2-116t+3360=(t-58)2-4,
当t=25时,W最大=1085元
∵1250>1085,
∴综上,当t=10时,W最大=1250元.
点评 此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com