精英家教网 > 初中数学 > 题目详情
如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D。
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由。
(1)y=﹣x2+3x;(2)(1,);(3)N1(2,0),N2(6,0),N3(﹣﹣1,0),N4﹣1,0).

试题分析:(1)由OA的长度确定出A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式y=a(x-2)2+3,将A的坐标代入求出a的值,即可确定出抛物线解析式;
(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,确定出直线AC解析式,与抛物线解析式联立即可求出D的坐标;
(3)存在,分两种情况考虑:如图所示,当四边形ADMN为平行四边形时,DM∥AN,DM=AN,由对称性得到M(3, ),即DM=2,故AN=2,根据OA+AN求出ON的长,即可确定出N的坐标;当四边形ADM′N′为平行四边形,可得三角形ADQ全等于三角形N′M′P,M′P=DQ=,N′P=AQ=3,将y=-代入得:-=-x2+3x,求出x的值,确定出OP的长,由OP+PN′求出ON′的长即可确定出N′坐标.
试题解析:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),
设抛物线解析式为y=a(x﹣2)2+3,
将A(4,0)坐标代入得:0=4a+3,即a=﹣,
则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;
(2)设直线AC解析式为y=kx+b(k≠0),
将A(4,0)与C(0,3)代入得:
解得:,故直线AC解析式为y=﹣x+3,
与抛物线解析式联立得:,解得:
则点D坐标为(1,);
(3)存在,分两种情况考虑:
①当点M在x轴上方时,如答图1所示:

四边形ADMN为平行四边形,DM∥AN,DM=AN,
由对称性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);
②当点M在x轴下方时,如答图2所示:

过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,
∴MP=DQ=,NP=AQ=3,将yM=﹣代入抛物线解析式得:﹣=﹣x2+3x,
解得:xM=2﹣或xM=2+,∴xN=xM﹣3=﹣﹣1或﹣1,
∴N3(﹣﹣1,0),N4﹣1,0).
综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3(﹣﹣1,0),N4﹣1,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣
(1)求抛物线对应的函数解析式;
(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上.
(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣),对称轴是直线x=﹣.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知抛物线 (b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,–1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求b,c的值;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与直线AC交于另一点Q.
①点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,求点M的坐标;
②取BC的中点N,连接NP,BQ.当取最大值时,点Q的坐标为________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

复习课中,教师给出关于x的函数(k是实数).
教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:
①存在函数,其图像经过(1,0)点;
②函数图像与坐标轴总有三个不同的交点;
③当时,不是y随x的增大而增大就是y随x的增大而减小;
④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;
教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为(  )
A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2
C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是(     )
A.k<-3B.k>-3C.k<3D.k>3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知关于x的二次函数y=x2-2x+c的图像上有两点A(x1,y1),B(x2,y2),若x1<1<x2且x1+x2=2,则y1与y2的大小关系是
A.y1<y2B.y1>y2C.y1=y2D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若二次函数配方后为,则       .

查看答案和解析>>

同步练习册答案