解:(1)AG=CE.
理由如下:∵四边形ABCD和BEFG是两个大小不等的正方形,
∴AB=BC,BE=BG,∠ABC=∠GBE=90°,
在△ABG和△GBE中,

,
∴△ABG≌△GBE(SAS),
∴AG=CE;
(2)AG=CE仍然成立.
理由如下:∵四边形ABCD和BEFG是两个大小不等的正方形,
∴AB=BC,BE=BG,∠ABC=∠GBE=90°,
∴∠ABC+∠CBG=∠GBE+∠CBG,
即∠ABG=∠CBE,
在△ABG和△GBE中,

,
∴△ABG≌△GBE(SAS),
∴AG=CE.
分析:(1)根据正方形的性质可得AB=BC,BE=BG,∠ABC=∠GBE=90°,然后利用“边角边”证明△ABG和△GBE全等,根据全等三角形对应边相等证明即可;
(2)与(1)的思路相同,求出∠ABG=∠CBE,然后利用“边角边”证明△ABG和△GBE全等,根据全等三角形对应边相等证明即可.
点评:本题考查了正方形的性质,全等三角形的判定与性质,熟记正方形的性质并确定出三角形全等的条件是解题的关键.