分析 根据二次函数y=mx2-(2m+2)x-1+m的图象与x轴有两个交点,可得△=[-(2m+2)]2-4m×(-1+m)>0且m≠0.
解答 解:∵原函数是二次函数,
∴m≠0.
∵二次函数y=mx2-(2m+2)x-1+m的图象与x轴有两个交点,则
△=b2-4ac>0,
△=[-(2m+2)]2-4m×(-1+m)>0,
4m2+8m+4-4m2+4m>0,
12m+4>0.
∴m>-$\frac{1}{3}$.
综上所述,m的取值范围是:m>-$\frac{1}{3}$且m≠0.
故答案是:m>-$\frac{1}{3}$且m≠0.
点评 本题考查了抛物线与x轴的交点,当△=b2-4ac>0时图象与x轴有两个交点;当△=b2-4ac=0时图象与x轴有一个交点;当△=b2-4ac<0时图象与x轴没有交点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com