解:(1)∵△ABE是等边三角形, ∴BA=BE,∠ABE=60°, ∵∠MBN=60°, ∴∠MBN-∠ABN=∠ABE-∠ABN, 即∠BMA=∠NBE, 又∵MB=NB, ∴△AMB≌△ENB(SAS); | |
(2)①当M点落在BD的中点时,AM+CM的值最小; ②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小, 理由如下:连接MN, 由(1)知,△AMB≌△ENB, ∴AM=EN, ∵∠MBN=60°,MB=NB, ∴△BMN是等边三角形, ∴BM=MN, ∴AM+BM+CM=EN+MN+CM, 根据“两点之间线段最短”,得EN+MN+CM=EC最短 ∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长; | |
(3)过E点作EF⊥BC交CB的延长线于F, ∴∠EBF=90°-60°=30°, 设正方形的边长为x,则BF=x,EF=, 在Rt△EFC中, ∵EF2+FC2=EC2, ∴()2+(x+x)2=, 解得,x=(舍去负值), ∴正方形的边长为。 | |
科目:初中数学 来源:不详 题型:单选题
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com