精英家教网 > 初中数学 > 题目详情

如图,P为正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP顺时针旋转,使点A与点C重合,这时P点旋转至G点,试画出旋转后的图形,然后猜一猜△PCG的形状,并说明理由,最后算一算∠APB的度数.

解:△PCG是直角三角形.
理由:如图,连接PG,
∵△BCG是△ABP顺时针旋转得到,
∴CG=AP=1,BG=PB=2,
又∵旋转后A与C重合∠ABC=90°,
∴∠PBG=90°,
在Rt△PBG中,PG===2
又∵(22+12=32=9,
即PG2+CG2=PC2
∴△PCG是直角三角形;
∵PG2+CG2=PC2
∴∠PGC=90°,
又∵PB=PG,∠PBG=90°,
∴∠PGB=45°,
∴∠BGC=∠PGC+∠PGB=90°+45°=135°,
∴∠APB=∠BGC=135°.
分析:根据旋转的性质,CG=PA,BG=PB,再判断出△PBG是等腰直角三角形,然后利用勾股定理列式求出PG,再利用勾股定理逆定理判断出△PCG是直角三角形;先求出∠BGC的度数,然后根据旋转变换只改变图形的位置不改变图形的形状与大小可得∠APB=∠BGC即可得解.
点评:本题考查了旋转的性质,等腰直角三角形的性质,勾股定理以及勾股定理逆定理的应用,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键,作出图形更形象直观.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,E为正方形ABCD的边AB上一点(不含A、B点),F为BC边的延长线上一点,△DAE旋转后能与△DCF重合.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果连接EF,那么△DEF是怎样的三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿精英家教网OM方向以
2
个单位每秒速度运动,运动时间为t.求:
(1)C的坐标为
 

(2)当t为何值时,△ANO与△DMR相似?
(3)△HCR面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值及S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,G为正方形ABCD的对称中心,A(0,2),B(1,0),直线OG交AB于E,DC于F,点Q从A出发沿A→B→C的方向以
5
个单位每秒速度运动,同时,点P从O出发沿OF方精英家教网向以
2
个单位每秒速度运动,Q点到达终点,点P停止运动,运动时间为t.求:
(1)求G点的坐标.
(2)当t为何值时,△AEO与△DFP相似?
(3)求△QCP面积S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正方形ABCD的对称中心,正方形ABCD的边长为
10
,tan∠ABO=3,直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以
2
个单位每秒速度运动,运动时间为t,求:
(1)直接写出A、D、P的坐标;
(2)求△HCR面积S与t的函数关系式;
(3)当t为何值时,△ANO与△DMR相似?
(4)求以A、B、C、R为顶点的四边形是梯形时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•梅州一模)如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙0与BC相切于点M,与AB、AD分别相交于点E、F.
(1)求证:CD与⊙0相切;
(2)若⊙0的半径为
2
,求正方形ABCD的边长.

查看答案和解析>>

同步练习册答案