精英家教网 > 初中数学 > 题目详情

设2+数学公式的整数部分和小数部分分别是x、y,请求x、y的值,并确定x与y的正负性.

解:∵2<<3,
∴都加上2得:4<2+<5,
∴x=4,y=2+-4=-2,
∴x>0,y>0.
分析:先求出的范围,再求出2+的范围,即可得出答案.
点评:本题考查了估算无理数的大小的应用,关键是求出2+的范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴

向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知

矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).

⑴求cb(用含t的代数式表示);

⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.

①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;

②求△MPN的面积St的函数关系式,并求t为何值时,S=

③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴
向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知
矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).
⑴求cb(用含t的代数式表示);
⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积St的函数关系式,并求t为何值时,S=
③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(四川成都卷)数学解析版 题型:解答题

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴
向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知
矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).
⑴求cb(用含t的代数式表示);
⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积St的函数关系式,并求t为何值时,S=
③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(江西卷)数学 题型:解答题

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴

向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知

矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).

⑴求cb(用含t的代数式表示);

⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.

①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;

②求△MPN的面积St的函数关系式,并求t为何值时,S=

③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(四川成都卷)数学解析版 题型:解答题

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴

向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知

矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).

⑴求cb(用含t的代数式表示);

⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.

①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;

②求△MPN的面积St的函数关系式,并求t为何值时,S=

③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

 

查看答案和解析>>

同步练习册答案