精英家教网 > 初中数学 > 题目详情

在△ABC中,∠A=120°,AB=3,AC=4.以B为圆心、以3.5为半径作⊙B,以C为圆心、以2.5为半径作⊙C,则⊙B与⊙C的位置关系为


  1. A.
    外离
  2. B.
    外切
  3. C.
    相交
  4. D.
    内切
A
分析:首先过点C作CD⊥BA于D,由∠A=120°,在Rt△ACD中,即可求得AD与CD的长,然后在Rt△BCD中,利用勾股定理求得CD的长,再根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.
解答:解:过点C作CD⊥BA于D,
∵∠A=120°,
∴∠CAD=60°,
∴∠ACD=30°,
在Rt△ACD中,AD=AC=×4=2,
∴CD==2
∴BD=AB+AD=3+2=5,
∴BC==
∵3.5+2.5=6,6<
∴⊙B与⊙C的位置关系为外离.
故选A.
点评:此题考查了圆与圆的位置关系与勾股定理的应用.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案