精英家教网 > 初中数学 > 题目详情
如图,抛物线y=x2-2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,C是抛物线上一点,且点C的横坐标为1,AC=3
10

(1)求抛物线的函数关系式;
(2)若D是抛物线上一点,直线BD经过第一、二、四象限,且原点O到直线BD的距离为
8
5
5
,求点D的坐标;
(3)在(2)的条件下,直线BD上是否存在点P,使得以A、B、P为顶点的三角形与△AOB相似?若存在,求出点P的坐标;若不存在,请说明理由.
(1)过点C作CE⊥x轴于点E,如图,
∵抛物线上一点C的横坐标为1,
∴C(1,n-2m+2),
其中n-2m+2>0,OE=1,CE=n-2m+2;
∵抛物线的顶点A在x轴负半轴上,
∴A(m,0),△=4m2-4(n+1)=0,得n=m2-1①,
其中m<0,OA=-m,AE=OE+OA=1-m,
在Rt△ACE中,AC=3
10

∵AE2+CE2=AC2
∴(1-m)2+(n-2m+2)2=(3
10
2②,
把①代入②得[(m-1)2]2+(m-1)2-90=0,
∴[(m-1)2+10][(m-1)2-9]=0,
∴(m-1)2-9=0
∴m1=4,m2=-2,
∵m<0,
∴m=-2.
把m=-2代入①,得n=4-1=3,
∴抛物线的关系式为y=x2+4x+4;
(2)设直线DB交x轴正半轴于点F,过点O作OM⊥DB于点M,如图,
∵点O到直线DB的距离为
8
5
5

∴OM=
8
5
5

而B点坐标为(0,4),
∴OB=4,
∴BM=
OB2-OM2
=
4
5
5

∵OB⊥OF,OM⊥BF,
∴△OBM△FOM,
OM
BM
=
OF
BO
,即
OF
4
=
8
5
5
4
5
5

∴OF=8,
∴F点坐标为(8,0),
设直线DB的解析式为y=kx+b,
把F(8,0)、B(0,4)代入得
8k+b=0
b=4
,解得
k=-
1
2
b=4

∴直线DB的解析式为y=-
1
2
x+4,
解方程组
y=x2+4x+4
y=-
1
2
x+4
x=0
y=4
x=-
9
2
y=
25
4

∴D点坐标为(-
9
2
25
4
);
(3)存在.理由如下:
∵OB=4,OF=8,
∴BF=
OB2+OF2
=4
5

∵y=(x+2)2
∴A点坐标为(-2,0),
∴OA=2,
而OB=4,
∴AB=
OB2+OA2
=2
5

∴OA:OB=OB:OF,
∴△OAB△OBF,
∴∠AOB=∠OFB,
∴∠ABF=∠ABO+∠OBF=∠OFB+∠OBF=90°,
∴△ABF△AOB,
此时P1在F点位置,符号要求,P1点的坐标为(8,0);
当△ABP2△BOA时,
则BP2:OA=AB:BO,即BP2:2=2
5
:4,
∴BP2=
5

过P2作P2H⊥x轴于H,如图,
∴OH:OF=BP2:BF,即OH:8=
5
:4
5

∴OH=2,
把x=2代入y=-
1
2
x+4得y=-
1
2
×2+4=2,
∴P2的坐标为(2,2);
当△ABP3△BOA时,同样得到BP3=
5

∴P3A⊥OA,
∴P3的横坐标为-2,
把x=-2代入y=-
1
2
x+4得y=-
1
2
×(-2)+4=5,
∴P3的坐标为(-2,6);
当△ABP4△AOB时,
则BP4:OB=AB:AO,即BP4:4=2
5
:2,
∴BP4=4
5

过P4作P4Q⊥y轴于Q,如图,
易证得△P4QB≌△FOB,
∴P4Q=8,
把x=-8代入y=-
1
2
x+4得y=-
1
2
×(-8)+4=8,
∴P4的坐标为(-8,8),
∴满足条件的P点坐标为(-8,8)、(-2,5)、(2,2)、(8,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-
1
4
x2+x+3
与x轴相交于点A、B,与y轴相交于点C,顶点为点D,对称轴l与直线BC相交于点E,与x轴相交于点F.
(1)求直线BC的解析式;
(2)设点P为该抛物线上的一个动点,以点P为圆心,r为半径作⊙P
①当点P运动到点D时,若⊙P与直线BC相交,求r的取值范围;
②若r=
4
5
5
,是否存在点P使⊙P与直线BC相切?若存在,请求出点P的坐标;若不存在,请说明理由.
提示:抛物线y=ax2+bx+x(a≠0)的顶点坐标(-
b
2a
4ac-b2
4a
),对称轴x=-
b
2a

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的顶点坐标是(
5
2
,-
9
8
)
,且经过点A(8,14).
(1)求该抛物线的解析式;
(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;
(3)设点P是x轴上的任意一点,分别连接AC、BC.试判断:PA+PB与AC+BC的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种______棵橘子树,橘子总个数最多.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某施工单位计划用地砖铺设正方形广场地面ABCD(如图所示),广场四角白色区域为正方形,阴影部分为四个矩形,四个矩形的宽都等于正方形的边长,阴影部分铺绿色地砖,其余部分铺白色地砖.已知
AB=100m,设小正方形的边长为xm.
(1)铺绿色地砖的面积为______m2;铺白色地砖的面积为______m2(用含x的代数式表示);
(2)若铺绿色地砖的费用为每平方米20元,铺白色地砖的费用为每平方米30元,设铺广场地面的总费用为y元,求y关于x的函数解析式,并求所需的最低费用.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,点P由C点出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,已知AC=4cm,BC=12cm,
(1)若记Q点的移动时间为t,试用含有t的代数式表示Rt△PCQ与四边形PQBA的面积;
(2)当P、Q处在什么位置时,四边形PQBA的面积最小,并求最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,水平地面的A、B两点处有两棵笔直的大树相距2米,小明的父亲在这两棵树间拴了一根绳子,给他做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子.
(1)请完成如下操作:以AB所在直线为x轴、线段AB的垂直平分线为y轴,建立平面直角坐标系,根据题中提供的信息,求绳子所在抛物线的函数关系式;
(2)求绳子的最低点离地面的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O的半径为2,C1是函数的y=
1
2
x2
的图象,C2是函数的y=-
1
2
x2
的图象,C3是函数的y=x的图象,则阴影部分的面积是______.

查看答案和解析>>

同步练习册答案