【题目】我市某中学举行“中国梦校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图4所示.
(1)根据图示填写下表:
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
【答案】(1)初中部:平均数为85分,众数为85分;高中部:中位数为80分(2)中位数高的初中部成绩好些(3)初中代表队选手成绩较为稳定
【解析】试题分析:(1)根据平均数、众数、中位数的统计意义计算可补全统计表;
(2)根据平均数和中位数的统计意义分析得出即可;
(3)分别求出初中、高中部的方差即可.
试题解析:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),
众数85(分);高中部中位数80(分).
(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,
所以在平均数相同的情况下中位数高的初中部成绩好些.
(3)∵=[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,
=[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160.
∴<,因此,初中代表队选手成绩较为稳定.
科目:初中数学 来源: 题型:
【题目】学期结束前,学校想调查学生对七年级数学实验教材的意见,特向七年级400名学生作问卷调查,其结果如下:
(1)计算出每一种意见的人数占调查人数的百分比;
(2)从统计图中你能得出什么结论?
意见 | 非常喜欢 | 喜欢 | 有一点喜欢 | 不喜欢 |
人数 | 200 | 160 | 32 | 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是
A. 他离家8km共用了30min B. 他等公交车时间为6min
C. 他步行的速度是100m/min D. 公交车的速度是350m/min
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形,∠C=90°,点D是AB的中点,点E,F分别在BC,AC上,且AF=CE.
(1)填空:∠A的度数是 .
(2)探究DE与DF的关系,并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠A=67.5°,BC=4,BE⊥CA于E,CF⊥AB于F,D是BC的中点.以F为原点,FD所在直线为x轴构造平面直角坐标系,则点E的坐标是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2 . 已知y与t的函数关系图像如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).
(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;
(2)求出线段BC、BE、ED的长度;
(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;
(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个水池,用两根水管注水,如果单开甲管,5小时注满水池,如果单开乙管,10小时注满水池.
(1)如果甲先注水2小时,然后由甲、乙共同注水,那么还需要多少时间才能把水池注满?
(2)假设在水池下面安装了排水管丙管,单开丙管6小时可以把一满池水放完,如果三管同时开放,多少小时才能把一空池注满水?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为喜迎祖国周年华诞,某巡警骑摩托车在天安门前的东西大街上巡逻,某天他从天安门出发,晚上留在处,规定向东方向为正,当天他的行驶记录如下(单位:):,,,,,,,.
处在天安门的何方?相距多少千米?
若摩托车耗油,问这一天摩托车共耗油多少升?
在这一天中,该巡警与天安门相距最远时是多少千米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com