精英家教网 > 初中数学 > 题目详情

已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣ 时,y的值.

﹣1

解析试题分析:依题意可设出y1、y2与x的函数关系式,进而可得到y、x的函数关系式;已知此函数图象经过(1,3)、(﹣1,1),即可用待定系数法求得y、x的函数解析式,进而可求出x=﹣时,y的值.
解:依题意,设y1=mx2,y2=,(m、n≠0)
∴y=mx2+
依题意有,

解得
∴y=2x2+
当x=﹣时,y=2×﹣2=﹣1
故y的值为﹣1
点评:考查了待定系数法求二次函数解析式,能够正确的表示出y、x的函数关系式,进而用待定系数法求得其解析式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知:一元二次方程
(1)求证:不论k为何实数时,此方程总有两个实数根;
(2)设k<0,当二次函数的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式;
(3)在(2)的条件下,若抛物线的顶点为C,过y轴上一点M(0,m)作y轴的垂线l,当m为何值时,直线l与△ABC的外接圆有公共点?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.

(1)判断线段AP与PD的大小关系,并说明理由;
(2)连接OD,当OD与半圆C相切时,求的长;
(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).
(1)写出抛物线的对称轴与x轴的交点坐标;
(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小;
(3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x1,y1)、B(x2,y2);(x1<x2
(1)当k=1,m=0,1时,求AB的长;
(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想.
(3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想.
(平面内两点间的距离公式).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线与抛物线相交于A,B两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且
(1)求b的值;
(2)求证:点在反比例函数的图象上;
(3)求证:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.

(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若反比例函数的图象上有两点P1(2,y1)和P2(3,y2),那么(  )

A.y1<y2<0B.y1>y2>0C.y2<y1<0D.y2>y1>0

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为(     )

A.3             B.4              C.5              D.10

查看答案和解析>>

同步练习册答案