精英家教网 > 初中数学 > 题目详情
(2007•安徽)下列图形中,既是中心对称又是轴对称的图形是( )
A.
B.
C.
D.
【答案】分析:根据轴对称图形与中心对称图形的概念求解.
解答:解:A、不是轴对称图形,也不是中心对称图形;
B、是轴对称图形,不是中心对称图形;
C、是轴对称图形,也是中心对称图形;
D、是轴对称图形,不是中心对称图形.
故选C.
点评:掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《代数式》(05)(解析版) 题型:解答题

(2007•安徽)探索n×n的正方形钉子板上(n是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:
当n=2时,钉子板上所连不同线段的长度值只有1与,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;
当n=3时,钉子板上所连不同线段的长度值只有1,,2,,2五种,比n=2时增加了3种,即S=2+3=5.
(1)观察图形,填写下表:
(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可)
(3)对n×n的钉子板,写出用n表示S的代数式.

钉子数(n)S值
 2×2 2
 3×3 2+3
 4×4 2+3+( )
 5×5 ( )

查看答案和解析>>

科目:初中数学 来源:2007年安徽省中考数学试卷(解析版) 题型:解答题

(2007•安徽)探索n×n的正方形钉子板上(n是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:
当n=2时,钉子板上所连不同线段的长度值只有1与,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;
当n=3时,钉子板上所连不同线段的长度值只有1,,2,,2五种,比n=2时增加了3种,即S=2+3=5.
(1)观察图形,填写下表:
(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可)
(3)对n×n的钉子板,写出用n表示S的代数式.

钉子数(n)S值
 2×2 2
 3×3 2+3
 4×4 2+3+( )
 5×5 ( )

查看答案和解析>>

同步练习册答案