精英家教网 > 初中数学 > 题目详情

如图,B、C、D三点在同一直线上,分别以BC、CD为边在同侧作两个正三角形△ABC和△ECD,P为BD边中点,M、N分别为AB、ED的中点,连接PM、PN,探求PM与PN的数量关系及∠MPN的度数,并证明.

解:PM=PN,∠MPN=120°;
理由如下:连接AD、BE.
∵△ABC和△ECD是等边三角形,
∴AC=BC,∠BCA=60°,CD=CE,∠ECD=60°;
∴∠ECD+∠ACE=∠BCA+∠ACE,即∠ACD=∠BCE,
∴在△ACD和△BCE中,

∴△ACD≌△BCE(SAS),
∴AD=BE(全等三角形的对应角相等),∠CAD=∠CBE(全等三角形的对应角相等);
又∵P为BD边中点,M、N分别为AB、ED的中点,
∴PM=AD,PN=BE,
∴PM=PN;
∵MP∥AD(中位线的性质),
∴∠BPM=∠CDA;
同理,得∠NPD=∠EBC=∠CAD,
∴∠MPN=180°-∠BPM-∠NPD=180°-∠CDA-∠CAD=∠ACD(等量代换),
∵∠ACD=∠ABC+∠BAC=120°,即∠MPN=120°.
分析:通过△ACD≌△BCE的对应边相等知AD=BE;然后由三角形中位线定理求得PM=PN;由平行线的性质、等量代换以及三角形外角定理来求∠MPN的度数.
点评:本题考查了全等三角形的判定与性质、三角形中位线定理以及等边三角形的性质.本题中利用三角形中位线定理将所求线段与已知线段联系了起来.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,A、C、E三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,A、Q、R三点在一条直线上,S为直线外一点,∠AQS=136°,∠QRS=64°,则∠QSR=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A,B,C三点在同一平面内,从山脚缆车站A测得山顶C的仰角为45°,测得另一缆精英家教网车站B的仰角为30°,AB间缆绳长500米(自然弯曲忽略不计).(
3
≈1.73
,精确到1米)
(1)求缆车站B与缆车站A间的垂直距离;
(2)乘缆车达缆车站B,从缆车站B测得山顶C的仰角为60°,求山顶C与缆车站A间的垂直距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A、B、C三点在⊙O上,∠BAC=60°,若⊙O的半径OC为12,则劣弧BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,A,O,B三点在同一直线上,OC,OE分别是∠BOD,∠AOD的平分线,OC与OE有什么位置关系?为什么?

查看答案和解析>>

同步练习册答案