精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:根据ABCD是正方形,可以证明BE=MN,阴影部分的面积等于正方形ABCD的面积减去四边形MBNE的面积,得到S关于x的二次函数,然后确定函数的大致图形.
解答:在△ABE中,BE==
∵ABCD是正方形,
∴BE=MN,
∴S四边形MBNE=BE•MN=x2+8,
∴阴影部分的面积S=16-(x2+8)=-x2+8.
根据二次函数的图形和性质,这个函数的图形是开口向下,对称轴是Y轴,顶点是(0,8),自变量的取值范围是0<x<4.
故选C.
点评:本题考查的是动点问题的函数图象,先根据正方形的性质得到BE=MN,然后表示出S关于x的二次函数,确定二次函数的大致图象.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案