精英家教网 > 初中数学 > 题目详情

如图,△ADC是等边三角形,B是DC边中点,E在AC延长线上,且CE=BC,请判断△ABE的形状并证明你的结论.

解:∵B是DC边中点,
∴AB是等边三角形ADC的顶角平分线,
∴∠BAC=30°.
∵CB=CE,
∴∠CBE=∠CEB,
∵∠ACD=60°,
∴∠E=30°,
∴∠E=∠BAE,
∴△ABE为等腰三角形.
分析:根据等边三角形的每个内角为60°及三线合一求出∠BAC的度数,再根据三角形的内角与外角的关系求出∠E=30°,从而得出△ABE是等腰三角形.
点评:本题考查了等边三角形的性质和等腰三角形的判定,利用等边三角形的每个内角是60°及三角形内角和外角的关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ADC是等边三角形,B是DC边中点,E在AC延长线上,且CE=BC,请判断△ABE的形状并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ADC是等边三角形,以点A为中心,把△ABD顺时针旋转60°得到△ACE.连接BE,则△ABE是什么特殊三角形
等边三角形
等边三角形

查看答案和解析>>

科目:初中数学 来源:北京期末题 题型:解答题

如图,△ADC是等边三角形,B是DC边中点,E在AC延长线上,且CE=BC,请判断△ABE的形状并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ADC是等边三角形,以点A为中心,把△ABD顺时针旋转60°得到△ACE.连接BE,则△ABE是什么特殊三角形______.
精英家教网

查看答案和解析>>

同步练习册答案