精英家教网 > 初中数学 > 题目详情

【题目】如图,DEFG四点在△ABC的三边上,其中DGEF相交于点H.若 ∠ABC∠EFC70°∠ACB60°∠DGB40°,则下列三角形相似的是( )

A△BDG△CEF B△ABC△CEF C△ABC△BDG D△FGH△ABC

【答案】B

【解析】A选项中,由已知条件只能确定在△BDG△CEF中,∠B=∠EFC,因此不能确定这两个三角形相似;

B选项中∠ABC∠EFC70°可得AB∥EF,∴△ABC△CEF

C选项中,由已知条件只能确定在△ABC△BDG中,∠B=∠B,因此不能确定这两个三角形相似;

D选项中,由已知条件只能确定在△ABC△FGH中,∠B=∠HFG,因此不能确定这两个三角形相似;

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在真角坐标系中,矩形0ABC的顶点AC在坐标轴上,点B(4,2);过点D(0,3)和E(6,0)的直线分别与ABBC交于点MN

(1)求直线DE的函数表达式和点MN的坐标;

(2)若函数yk0,k为常数)经过点M,求该函数的表达式,并判定点N是否在该函数的图象上:

(3)求△OMN的面积S

(4)若函教yk0,k为常数)的图象与△BMN没有交点,清楚直接写出k的取值范圈,不需解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在3×3的正方形网格(每个小正方形的边长均为1)中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴(水平线为横轴),建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称.

(1)原点是 (填字母A,B,C,D );

(2)若点P在3×3的正方形网格内的坐标轴上,且与四个格点A,B,C,D,中的两点能构成面积为1的等腰直角三角形,则点P的坐标为 (写出可能的所有点P的坐标)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l1l2,且l3l1l2分别交于A,B两点,点PAB.

(1)试找出∠1,2,3之间的关系并说出理由;

(2)如果点PA,B两点之间运动,问∠1,2,3之间的关系是否发生变化?

(3)如果点PA,B两点外侧运动,试探究∠1,2,3之间的关系(PA,B不重合).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:若∠AOD=BOC=60°,A、O、C三点在同一条线上,AOBCOD是能够重合的图形.求:

(1)旋转中心;

(2)旋转角度数;

(3)图中经过旋转后能重合的三角形共有几对?若A、O、C三点不共线,结论还成立吗?为什么?

(4)求当BOC为等腰直角三角形时的旋转角度;

(5)若∠A=15°,则求当A、C、B在同一条线上时的旋转角度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南充某制衣厂现有22名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条。

(1)若该厂要求每天制作的衬衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?

(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=4 cmAC=2 cm

(1)AB上取一点DD不与AB重合),当AD=_________cm时,△ACD∽△ABC

(2)AC的延长线上取一点E,当CE=________cm时,△AEB∽△ABC此时BEDC有怎样的位置关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)(1)阅读理解:

如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是_________;

(2)问题解决:

如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证BE+CF>EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.

(1)每辆小客车和每辆大客车各能坐多少名学生?

(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:

①请你设计出所有的租车方案;

②若小客车每辆租金150元,大客车每辆租金250元,请选出最省线的租车方案,并求出最少租金.

查看答案和解析>>

同步练习册答案