精英家教网 > 初中数学 > 题目详情
25、如图,以△ABC的边AB为直径的⊙O交AC边于点D,且过点D的⊙O的切线DE平分BC边,交BC于E.
(1)求证:BC是⊙O的切线.
(2)当△ABC满足什么条件时,以点O、B、E、D为顶点的四边形是正方形?
分析:(1)要证BC是⊙O的切线,就要证OB⊥BC,只要证∠OBE=90°即可,首先作辅助线,连接OD、OE,由已知得OE为△ABC的中位线,OE∥AC,从而证得△ODE≌△OBE,推出∠ODE=∠OBE,又DE是⊙O的切线,所以得∠OBE=90°,即OB⊥BC,得证.
(2)由题意使四边形OBED是正方形,即得到OD=BE,又由已知BE=CE,BC=2BE,AB=2OD,所以AB=BC,即△ABC为等腰三角形(AB=BC).再通过△ABC为等腰三角形(AB=BC)论证以点O、B、E、D为顶点的四边形是正方形.
解答:解:(1)连接OD、OE,
∵O为AB的中点,E为BC的中点,
∴OE为△ABC的中位线,
∴OE∥AC(三角形中位线性质),
∴∠DOE=∠ODA,∠BOE=∠A(平行线性质),
∵OA=OD
∴∠A=∠ODA
∴∠DOE=∠BOE(等量代换)
∵OD=OB,OE=OE
∴△ODE≌△OBE(边角边)
∴∠ODE=∠OBE
∵DE是⊙O的切线
∴∠ODE=∠OBE=90°
∴OB⊥BC
∴BC是⊙O的切线.
(2)当为等腰三角形(AB=BC)时四边形OBDE是正方形,证明如下:
连接BD,
∵AB是⊙O的直径
∴BD⊥AC(直径所对的圆周角为直角),
∵AB=BC,
∴D为AC的中点(等腰三角形的性质),
∵E为BC的中点,
∴DE为△ABC的中位线,
∴DE∥AB,
∵DE为⊙O的切线,
∴OD⊥DE,
∴OD⊥AB,
∴∠DOB=∠OBE=∠ODE=90°,
∵OD=OB,
∴四边形OBED为正方形.
点评:此题是切线的判定与性质、全等三角形的判定与性质、正方形的判定性质、圆周角定理的综合运用.解题的关键是通过作辅助线
证明三角形全等,得到∠OBE=90°,即OB⊥BC得出结论.第二问关键是通过以点O、B、E、D为顶点的四边形是正方形推出△ABC为等腰三角形(AB=BC).然后加以论证.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.
(1)当∠BAC满足什么条件时,四边形ADFE是矩形;
(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;
(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以△ABC的边AB为直径作⊙O,交BC于D点,交AC于E点,BD=DE
(1)求证:△ABC是等腰三角形;
(2)若E是AC的中点,求
BD
的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•峨眉山市二模)如图,以△ABC的边AB为直径作⊙O,BC与⊙O交于D,D是BC的中点,过D作DE⊥AC,交AC于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,BD=8,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•黔东南州)如图,以△ABC的边BC为直径作⊙O分别交AB,AC于点F.点E,AD⊥BC于D,AD交于⊙O于M,交BE于H.
求证:DM2=DH•DA.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以△ABC的边AB为直径的⊙O交AC于点D,弦DE∥AB,∠C=∠BAF
(1)求证:BC为⊙O的切线;
(2)若⊙O的半径为5,AD=2
5
,求DE的长.

查看答案和解析>>

同步练习册答案