精英家教网 > 初中数学 > 题目详情

利用两种方法求函数的最值.

答案:略
解析:

(1)

∴x=1

(2)∴x=1时,


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

利用图象解一元二次方程x2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x2和直线y=-x+3,两图象交点的横坐标就是该方程的解.
(1)填空:利用图象解一元二次方程x2+x-3=0,也可以这样求解:在平面直角坐标系中画出抛物线y=
 
和直线y=-x,其交点的横坐标就是该方程的解.
(2)已知函数y=-
6
x
的图象(如图所示),利用图象求方程
6
x
-x+3=0的近精英家教网似解.(结果保留两个有效数字)

查看答案和解析>>

科目:初中数学 来源: 题型:

小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
复习日记卡片
内容:一元二次方程解法归纳                                时间:2007年6月×日
举例:求一元二次方程x2-x-1=0的两个解
方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解
解方程:x2-x-1=0.
解:

方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y=
 
的图象与x轴交点的横坐标,即x1,x2就是方程的解.
精英家教网

方法三:利用两个函数图象的交点求解
(1)把方程x2-x-1=0的解看成是一个二次函数y=
 
的图象与一个一次函数y=
 
图象交点的横坐标;
(2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解.

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

利用图象解一元二次方程x2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x2+x-3图象,图象与x轴交点的横坐标就是该方程的解.也可以这样求解:在平面直角坐标系中画出y=x2和直线u=-x+3,两图象交点的横坐标就是该方程的解.根据以上提示完成以下问题:

(1)在图(1)中画出函数y=x2-2x-3的图象,利用图象求方程x2-2x-3=0的解.
(2)已知函数y=-
6x
的图象(如图2所示),利用该图象求方程-x2-x+6=0的解.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

利用两种方法求函数的最值.

查看答案和解析>>

同步练习册答案