精英家教网 > 初中数学 > 题目详情

如图,六边形ABCDEF的六个内角相等,若其连续四边长依次为1,9,9,7,(单位:),请你求出这个六边形的周长.

解:法一:如图,连接DF,则△DEF是等腰三角形,
∵六边形ABCDEF的六个内角相等,
∴∠DEF=(6-2)•180°=120°,
∴∠EDF=∠EFD=(180°-120°)=30°,
∴∠AFD=120°-30°=90°,
同理可得∠CDF=90°,
∴DF⊥AF,AF∥CD,
如图,分别作DF的垂线,垂线AH,CI,
则∠ABH=∠CBI=120°-90°=30°,
∴AH=AB•sin60°,CI=BC•sin60•,
∴AB+BC=(AH+CI)÷sin60°=(AH+CI)=DF•
在△DEF中,DF=2×9sin60°=9
∴AB+BC=9×=18,
∴这个六边形的周长是1+9+9+7+18=44.

法二:作直线AB、CD、EF,它们分别两两相交于点G、H、P,
∵六边形ABCDEF的六个内角相等,
∴∠FAB=∠ABC=∠BCD=∠CDE=∠DEF=∠EFA=120°,
∴∠PAF=∠PFA=∠HED=∠HDE=∠GCB=∠GBC=60°,
∴△GHP、△GBC、△HDE和△HAF都是等边三角形,
∴PF=PA=AF=1,HE=HD=ED=9,PG=GH=CG=PH=1+9+9=19,
∴BC=CG=BG=GH-CD-DH=19-9-7=3,
∴AB=PG-PA-BG=19-3-1=15,
∴这个六边形的周长是1+9+9+7+3+15=44.
故答案为:44.
分析:连接DF,可以得到△DEF是顶角为120°的等腰三角形,过E作EG⊥DF,然后求出DF的长度,如图,分别作垂线然后表示出AH、CI,再根据AH+CI=DF即可求出AB+BC的长度,然后周长可得.
点评:本题考查了多边形的外角与内角,等腰三角形的判定,作出辅助线构造出直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图①:四边形ABCD为正方形,M、N分别是BC和CD中点,AM与BN交于点P,
(1)请你用几何变换的观点写出△BCN是△ABM经过什么几何变换得来的;
(2)观察图①,图中是否存在一个四边形,这个四边形的面积与△APB的面积相等?写出你的结论.(不必证明)
(3)如图②:六边形ABCDEF为正六边形,M、N分别是CD和DE的中点,AM与BN交于点P,问:你在(2)中所得的结论是否成立?若成立,写出结论并证明,若不成立请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD是由四个边长为l的正六边形所围住,则四边形ABCD的面积是(  )
A、
3
4
B、
3
2
C、1
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:四边形ABCD中,AD∥BC,∠B=∠C,AD=a(a>0),BC=8,AD、BC间的距离为2
3
,有一边长为2的等边△EFG,在四边形ABCD内作任意运动,在运动过程中始终保持EF∥BC.记△EFG在四边形ABCD内部运动过程中“能够扫到的部分”的面积为S.
(1)如图①所示,当a=8时,△EFG在四边形ABCD内部运动过程中“能够扫到的部分”即为六边形HIBCJK,则S=
 

(2)如图②所示,当a=10时,求S的值;
(3)如图③所示,当a=2时,求S的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的内角和为2×180°=360°,五边形ABCDE的内角和为3×180°=540°,…由此可见:
(1)六边形的内角和为
720
720
度;
(2)n边形的内角和为
(n-2)×180
(n-2)×180
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是由四个边长为1的正六边形所围住,则四边形ABCD的面积是(     )
A.1B.2C.D.

查看答案和解析>>

同步练习册答案