精英家教网 > 初中数学 > 题目详情
(2010•贺州)如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧上任意一点(不与点A、B重合),连接AB、AC、BC、OC.
(1)指出图中与∠ACO相等的一个角;
(2)当点C在⊙P上什么位置时,直线CA与⊙O相切?请说明理由;
(3)当∠ACB=60°时,两圆半径有怎样的大小关系?请说明你的理由.

【答案】分析:要使直线CA与⊙O相切,只要证得∠OAC=90°即可;根据第二问第三问就不难求得了.
解答:解:(1)连接OA,OB.
在⊙O中,∵OA=OB,
=
∴∠ACO=∠BCO;

(2)连接OP,并延长与⊙P交于点D.
若点C在点D位置时,直线CA与⊙O相切
理由:连接AD,OA,则∠DAO=90°
∴OA⊥DA
∴DA与⊙O相切
即点C在点D位置时,直线CA与⊙O相切.

(3)当∠ACB=60°时,两圆半径相等;
理由:作直径OD,连接BD,AD,OA,
∵∠ADB=∠ACB=60°,PO垂直平分AB,
=
∵∠ADO=∠BDO,
∴∠ADO=30°,
∵OD是直径,
∴∠DAO=90°,
∴OA=OD,
∴OA=PO,
∴当∠ACB=60°时,两圆半径相等.
点评:本题考查了等弧所对的圆周角相等、直径所对的圆周角等于90°,切线的判定等知识.具有一定的综合性和难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•贺州)如图是由一些大小相同的小正方体搭成的一个几何体的三视图,则这个几何体的小正方体个数共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•贺州)如图所示,OM是一堵高为2.5米的围墙截面的高,小明在围墙内投篮,篮球从点A处投出,却投到了篮球框外,正好打在了斜靠在围墙上的一根竹竿CD的点B处,篮球经过的路线是二次函数y=ax2+bx+4图象的一部分.现以O为原点,垂直于OM的水平线为x轴,OM所在的直线为y轴,建立如图所示的平面直角坐标系,如果篮球不被竹竿挡住,篮球将通过围墙外的点E,点E的坐标为(-3,
72
),点B和点E关于此二次函数图象的对称轴对称,若tan∠OCM=1.(围墙的厚度忽略不计,围墙内外水平面高度一样)
(1)求竹竿CD所在的直线的解析式;
(2)求点B的坐标;
(3)在围墙外距围墙底部O点5.5米处有一个大池塘,如果篮球投出后不被竹竿挡住,篮球会不会直接落入池塘?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•贺州)如图,在梯形ABCD中,AD∥BC,AC、BD是梯形的对角线,且AC⊥BD,AD=3cm,BC=7cm,BD=6cm,则梯形ABCD的面积是
24
24
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•贺州)如图,△NKM与△ABC是两块完全相同的45°的三角尺,将△NKM的直角顶点M放在△ABC的斜边AB的中点处,且MK经过点C,设AC=a.则两个三角尺的重叠部分△ACM的周长是
(1+
2
)a
(1+
2
)a

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•贺州)如图,在△ABC中,DE∥BC,EF∥AB.
(1)求证:△ADE∽△EFC;
(2)如果AB=6,AD=4,求
SADES△EFC
的值.

查看答案和解析>>

同步练习册答案