Èçͼ1£¬ÒÑ֪˫ÇúÏßy=
k
x
(k£¾0)
ÓëÖ±Ïßy=k¡äx½»ÓÚA£¬BÁ½µã£¬µãAÔÚµÚÒ»ÏóÏÞ£®ÊÔ½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÈôµãAµÄ×ø±êΪ£¨4£¬2£©£¬ÔòµãBµÄ×ø±êΪ______£»ÈôµãAµÄºá×ø±êΪm£¬ÔòµãBµÄ×ø±ê¿É±íʾΪ______£»
£¨2£©Èçͼ2£¬¹ýÔ­µãO×÷ÁíÒ»ÌõÖ±Ïßl£¬½»Ë«ÇúÏßy=
k
x
(k£¾0)
ÓÚP£¬QÁ½µã£¬µãPÔÚµÚÒ»ÏóÏÞ£®
¢Ù˵Ã÷ËıßÐÎAPBQÒ»¶¨ÊÇƽÐÐËıßÐΣ»
¢ÚÉèµãA£¬PµÄºá×ø±ê·Ö±ðΪm£¬n£¬ËıßÐÎAPBQ¿ÉÄÜÊǾØÐÎÂ𣿿ÉÄÜÊÇÕý·½ÐÎÂð£¿Èô¿ÉÄÜ£¬Ö±½Óд³öm£¬nÓ¦Âú×ãµÄÌõ¼þ£»Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©¡ßË«ÇúÏߺÍÖ±Ïßy=k'x¶¼ÊǹØÓÚÔ­µãµÄÖÐÐĶԳÆͼÐΣ¬ËüÃǽ»ÓÚA£¬BÁ½µã£¬
¡àBµÄ×ø±êΪ£¨-4£¬-2£©£¬
£¨-m£¬-k'm£©»ò£¨-m£¬-
k
m
£©£»

£¨2£©¢ÙÓɹ´¹É¶¨ÀíOA=
m2+(k¡äm)2
£¬
OB=
(-m)2+(-k¡äm)2
=
m2+(k¡äm)2
£¬
¡àOA=OB£®
ͬÀí¿ÉµÃOP=OQ£¬
ËùÒÔËıßÐÎAPBQÒ»¶¨ÊÇƽÐÐËıßÐΣ»
¢ÚËıßÐÎAPBQ¿ÉÄÜÊǾØÐΣ¬
´Ëʱm£¬nÓ¦Âú×ãµÄÌõ¼þÊÇmn=k£»
ËıßÐÎAPBQ²»¿ÉÄÜÊÇÕý·½ÐΣ¨1·Ö£©
ÀíÓÉ£ºµãA£¬P²»¿ÉÄÜ´ïµ½×ø±êÖᣬ¼´¡ÏPOA¡Ù90¡ã£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¨1£©Ëùʾ£¬Õý±ÈÀýº¯Êýy=kxÓë·´±ÈÀýº¯Êýy=
t
x
µÄͼÏó½»ÓÚµãA£¨-3£¬2£©£®


£¨1£©ÊÔÈ·¶¨ÉÏÊöÕý±ÈÀýº¯ÊýÓë·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨2£©¸ù¾ÝͼÏó»Ø´ð£¬ÔÚµÚ¶þÏóÏÞÄÚ£¬µ±xÈ¡ºÎֵʱ£¬·´±ÈÀýº¯ÊýµÄÖµ´óÓÚÕý±ÈÀýº¯ÊýµÄÖµ£¿
£¨3£©Èçͼ£¨2£©Ëùʾ£¬P£¨m£¬n£©ÊÇ·´±ÈÀýº¯ÊýͼÏóÉϵÄÒ»¶¯µã£¬ÆäÖÐ-3£¼m£¼0£¬¹ýµãP×÷Ö±ÏßPB¡ÎxÖᣬ½»yÖáÓÚµãB£¬¹ýµãA×÷Ö±ÏßAD¡ÎyÖᣬ½»xÖáÓÚµãD£¬½»Ö±ÏßPBÓÚµãC£®µ±ËıßÐÎOACPµÄÃæ»ýΪ6ʱ£¬ÇëÅжÏÏ߶ÎBPÓëCPµÄ´óС¹Øϵ£¬²¢ËµÃ÷ÀíÓÉ£®
£¨4£©ÔÚµÚ£¨3£©ÎÊÌõ¼þÖУ¬Á¬½ÓAP£¬Èô¡ÏPAO=90¡ã£¬ÊÔÇó·Öʽm2+
16
m2
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ1£¬ÒÑÖªµãA£¨a£¬0£©£¬B£¨0£¬b£©£¬ÇÒa¡¢bÂú×ã
a+1
+(a+b+3)2=0
£¬?ABCDµÄ±ßADÓëyÖá½»ÓÚµãE£¬ÇÒEΪADÖе㣬˫ÇúÏßy=
k
x
¾­¹ýC¡¢DÁ½µã£®
£¨1£©ÇókµÄÖµ£»
£¨2£©µãPÔÚË«ÇúÏßy=
k
x
ÉÏ£¬µãQÔÚyÖáÉÏ£¬ÈôÒÔµãA¡¢B¡¢P¡¢QΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÊÔÇóÂú×ãÒªÇóµÄËùÓеãP¡¢QµÄ×ø±ê£»
£¨3£©ÒÔÏ߶ÎABΪ¶Ô½ÇÏß×÷Õý·½ÐÎAFBH£¨Èçͼ3£©£¬µãTÊDZßAFÉÏÒ»¶¯µã£¬MÊÇHTµÄÖе㣬MN¡ÍHT£¬½»ABÓÚN£¬µ±TÔÚAFÉÏÔ˶¯Ê±£¬
MN
HT
µÄÖµÊÇ·ñ·¢Éú¸Ä±ä£¿Èô¸Ä±ä£¬Çó³öÆä±ä»¯·¶Î§£»Èô²»¸Ä±ä£¬ÇëÇó³öÆäÖµ£¬²¢¸ø³öÄãµÄÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

Èçͼ£¬ÒÑÖª·´±ÈÀýº¯Êýy=
m
x
µÄͼÏó¾­¹ýµãN£¬Ôò´Ë·´±ÈÀýº¯ÊýµÄ½âÎöʽΪ______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

Èçͼ£¬¡÷P1OA1¡¢¡÷P2A1A2ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬µãP1¡¢P2ÔÚº¯Êýy=
4
x
(x£¾0)
µÄͼÏóÉÏ£¬Ð±±ßOA1¡¢A1A2¶¼ÔÚxÖáÉÏ£¬ÔòµãA2µÄ×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨2
2
-2
£¬0£©
B£®£¨2
2
+2
£¬0£©
C£®£¨4
2
£¬0£©
D£®£¨2
2
£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Äã³Ô¹ýÀ­ÃæÂð£¿Êµ¼ÊÉÏÔÚ×öÀ­ÃæµÄ¹ý³ÌÖоÍÉø͸×ÅÊýѧ֪ʶ£ºÒ»¶¨Ìå»ýµÄÃæÍÅ×ö³ÉÀ­Ã棬ÃæÌõµÄ×ܳ¤¶Èy£¨µ¥Î»£ºm£©ÊÇÃæÌõµÄ´Öϸ£¨ºá½ØÃæ»ý£©x£¨µ¥Î»£ºmm2£©µÄ·´±ÈÀýº¯Êý£¬ÆäͼÏóÈçͼËùʾ£®
£¨1£©Ð´³öyÓëxµÄº¯Êý¹Øϵʽ£»
£¨2£©Èôµ±ÃæÌõµÄ´ÖϸӦ²»Ð¡ÓÚ1.6mm2£¬ÃæÌõµÄ×ܳ¤¶È×ÊǶàÉÙ£¿
£¨3£©ÈôÃæÌõµÄ³¤¶ÈΪ50m£¬ÄÇôÃæÌõµÄ´Öϸ³Ì¶ÈΪ¶àÉÙmm2£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

Èçͼ£¬DÊÇ·´±ÈÀýº¯Êýy=
k
x
(k£¼0)
µÄͼÏóÉÏÒ»µã£¬¹ýD×÷DE¡ÍxÖáÓÚE£¬DC¡ÍyÖáÓÚC£¬Ò»´Îº¯Êýy=-x+mÓëy=-
3
3
x+2
µÄͼÏ󶼾­¹ýµãC£¬ÓëxÖá·Ö±ð½»ÓÚA¡¢BÁ½µã£¬ËıßÐÎDCAEµÄÃæ»ýΪ4£¬ÔòkµÄֵΪ______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬Ö±Ïßy=kºÍË«ÇúÏßy=
k
x
ÏཻÓÚµãP£¬¹ýPµã×÷PA0´¹Ö±ÓÚxÖᣬ´¹×ãΪA0£¬xÖáÉϵĵãA0£¬A1£¬A2µÄºá×ø±êÊÇÁ¬ÐøµÄÕûÊý£¬¹ýµãA1£¬A2·Ö±ð×÷xÖáµÄ´¹Ïߣ¬ÓëË«ÇúÏßy=
k
x
£¨x£¾0£©¼°Ö±Ïßy=k·Ö±ð½»ÓÚµãB1£¬B2£¬C1£¬C2£¬
£¨1£©ÇóA0µã×ø±ê£»
£¨2£©Çó
C1B1
A1B1
¼°
C2B2
A2B2
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

Èçͼ£¬¡÷AOBΪµÈ±ßÈý½ÇÐΣ¬µãBµÄ×ø±êΪ£¨-2£¬0£©£¬¹ýµãC£¨2£¬0£©×÷Ö±Ïßl½»AOÓÚµãD£¬½»ABÓÚE£¬µãEÔÚ·´±ÈÀýº¯Êýy=
k
x
(x
£¼0£©µÄͼÏóÉÏ£¬Èô¡÷ADEºÍ¡÷DCO£¨¼´Í¼ÖÐÁ½ÒõÓ°²¿·Ö£©µÄÃæ»ýÏàµÈ£¬ÔòkֵΪ______£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸