精英家教网 > 初中数学 > 题目详情

在△ABC中,AB=5,AC=12,CB=13,D、E为边BC上的点,满足BD=1,CE=8.则∠DAE的度数为________.

45°
分析:首先由已知可得△ABC是直角三角形,则可求得∠B与∠C的余弦值,在△ABD与△AEC中利用余弦定理即可求得AD与AE的值,再在△ADE中用余弦定理求得∠DAE的余弦值,即可求得∠DAE的度数.
解答:解:∵AB=5,AC=12,CB=13,
∴AB2+AC2=CB2
∴∠BAC=90°,
∴cos∠B=,cos∠C=
∵BD=1,CE=8,
∴DE=4,
∴AD2=AB2+BD2-2•AB•BD•cos∠A=25+1-2×5×1×=26-=
AE2=AC2+CE2-2•AC•CE•cos∠C=144+64-2×12×8×=208-=
∴AD=,AE=
∴cos∠DAE==
∴∠DAE=45°.
故答案为:45°.
点评:此题考查了余弦定理的知识以及勾股定理的逆定理.此题难度适中,解题时注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案