精英家教网 > 初中数学 > 题目详情

在正方形ABCD中,对角线AC、BD相交于点O,点Q是CD上任意一点,DP⊥AQ交BC于点P.
(1)求证:DQ=CP;
(2)OP与OQ有何关系?试证明你的结论.

(1)证明:∵正方形ABCD中,∠ADC=90°,即∠ADP+∠PDC=90°,
又∵DP⊥AQ,
∴∠DAQ+∠ADP=90°,
∴∠DAQ=∠PDC,
∵在△ADQ和△CDP中,

∴△ADQ≌△CDP(ASA),
∴DQ=CP;

(2)OP=OQ且OP⊥OQ.
证明:∵四边形ABCD是正方形,
∴∠ODQ=∠OCP,
∵在△OCP和△ODQ中,

∴△OCP≌△ODQ(SAS),
∴OP=OQ,且∠DOQ=∠POC
又∵∠DOC=90°,
∴∠QOP=90°,
则OP⊥OQ.
分析:(1)根据直角三角形的性质证得∠DAQ=∠PDC,然后根据ASA即可证得△ADQ≌△CDP,即可证得;
(2)首先证明△OCP≌△ODQ,即可得到OP=OQ,且∠DOQ=∠POC,然后根据正方形的对角线互相垂直即可证得∠QOP=90°,从而证出垂直.
点评:本题考查了正方形的性质以及全等三角形的判定与性质,正确证明△OCP≌△ODQ是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在正方形ABCD中,E为AD的中点,F为DC上的一点,且DF=
14
DC.求证:△BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN
(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.

查看答案和解析>>

同步练习册答案