精英家教网 > 初中数学 > 题目详情
如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O的直经BD=6,连接CD、AO、BC,且AO与BC相交于点E.
(1)求证:CDAO;
(2)设CD=x,AO=y,求y与x之间的函数关系式,并直接写出自变量x的取值范围;
(3)请阅读下方资源链接内容.在(2)的基础上,若CD、AO的长分别为一元二次方程x2-(4m+1)x+4m2+2=0的两个实数根,求AB的长.
(1)连接OC,…(1分)
∵AB、AC是⊙O的切线,
∴∠ACO=∠ABO=90°,
在Rt△ACO和Rt△ABO中,
OC=OB
AO=AO

∴Rt△ACO≌Rt△ABO(HL),
∴AB=AC,∠1=∠2,
∴AO⊥BC,
∴∠AEC=90°,…(2分)
∵BD是⊙O的直径,∴∠DCB=90°,
∴∠DCB=∠AEC,
∴CDAO;…(3分)

(2)∵CDAO,∴∠3=∠4,
∵AB是⊙O的切线,DB是直径,
∴∠DCB=∠ABO=90°,
∴△BDC△AOB,…(4分)
BD
AO
=
DC
OB
,即
6
y
=
x
3

∴y=
18
x
,…(5分)
且自变量x的取值范围为0<x<6;…(6分)

(3)∵CD、AO的长分别为一元二次方程x2-(4m+1)x+4m2+2=0的两个实数根,
∴x•y=4m2+2,…(7分)
又由(2)知y=
18
x

∴xy=18,
∴4m2+2=18,
∴m=±2,…(8分)
①当m=2时,原方程可化为x2-9x+18=0,∴x=3或6;
由(2)知x<6,∴只能取x=3,
∴CD=3,AO=6,
在Rt△AOB中,AO=6,OB=3,
∴AB=
62-33
=3
3
;…(9分)
②当m=-2时,原方程可化为x2+7x+18=0,
∵△=72-4×1×18<0,∴方程无解,…(10分)
综上,AB的长为3
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知:AB是⊙O的直径,BC、CD分别是⊙O的切线,切点分别为B、D,E是BA和CD的延长线的交点.
(1)猜想AD与OC的位置关系,并加以证明;
(2)设AD•OC的积为S,⊙O的半径为r,试探究S与r的关系;
(3)当r=2,sin∠E=
1
3
时,求AD和OC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且ABOP.若阴影部分的面积为10π,则弦AB的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是△ABC外接圆,直径AB=12,∠A=2∠B.
(1)∠A=______°,∠B=______°;
(2)求BC的长(结果用根号表示);
(3)连接OC并延长到点P,使CP=OC,连接PA,画出图形,求证:PA是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA是⊙O的切线,切点为A,割线PCB交⊙O于C、B两点,半径OD⊥BC,垂足为E,AD交PB于点F.
(1)PA与PF是否相等?______(填“是”或“否”);
(2)若F是PB的中点,CF=1.5,则切线PA的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.
求证:AB是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=130°,过D点的切线PD与直线AB交于P点,则∠ADP的度数为(  )
A.40°B.45°C.50°D.65°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,CA=CB,CDAB且与OA的延长线交于点D.
(1)判断CD与⊙O的位置关系并说明理由;
(2)若∠ACB=120°,OA=2.求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,则⊙O的半径是______.

查看答案和解析>>

同步练习册答案