精英家教网 > 初中数学 > 题目详情
AB=AD或AC⊥BD(答案不唯一)
AB=AD或AC⊥BD(答案不唯一)
时,矩形ABCD变为正方形.(填一条件)
分析:根据矩形的性质及正方形的判定进行填空.
解答:解:∵有一组邻边相等的矩形为正方形;对角线互相垂直的矩形为正方形;
∴满足的条件为:对角线互相垂直或有一组邻边相等.即AB=AD或AC⊥BD(答案不唯一).
故答案可以是:AB=AD或AC⊥BD(答案不唯一).
点评:本题考查了正方形、矩形的性质.注意正方形与矩形的性质的区别与联系.判别一个四边形为正方形主要根据正方形的概念,途经有两种:
①先说明它是矩形,再说明有一组邻边相等;
②先说明它是菱形,再说明它有一个角为直角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

问题背景  在△ABC中,∠B=2∠C,点D为线段BC上一动点,当AD满足某种条件时,探讨在线段AB、BD、CD、AC四条线段中,某两条或某三条线段之间存在的数量关系.
例如:在图1中,当AB=AD时,可证得AB=DC,现在继续探索:
任务要求:
(1)当AD⊥BC时,如图2,求证:AB+BD=DC;
(2)当AD是∠BAC的角平分线时,判断AB、BD、AC的数量关系,并证明你的结精英家教网论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中AB是直径,D是上半圆中点,E是下半圆中点.点C是圆上一点(不与B、E重合)连接AD、BD、AC、BC.设BC长度为n,AC长度为m.
(1)当m=8,n=6时,求四边形ACBD的面积S;
(2)用含m、n的式子表示四边形ACBD的面积S;
(3)你可知道tan∠DAC=
m+nm-n
吗?请你详细说明理由;
(4)如图,当点C运动至弧AD或弧BD上时,(3)中结论是否成立?若成立,请精英家教网说明理由;若不成立,请用含m、n的式子表示tan∠DAC.(直接写答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•尤溪县质检)如图①,在⊙O中AB是直径,D是上半圆中点,E是下半圆中点,点C是⊙O上一点(不与B、E重合)连接AD、BD、AC、BC.设BC长度为n,AC长度为m.
(1)用含m、n的式子表示四边形ACBD的面积S;
(2)证明:tan∠DAC=
m+n
m-n

(3)如图②③,当点C运动至
AD
BD
上时,②中结论是否成立?若成立,请说明理由;若不成立,请用含m、n的式子表示tan∠DAC.(直接写答案,并选择其中一种证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

问题背景  在△ABC中,∠B=2∠C,点D为线段BC上一动点,当AD满足某种条件时,探讨在线段AB、BD、CD、AC四条线段中,某两条或某三条线段之间存在的数量关系.
例如:在图1中,当AB=AD时,可证得AB=DC,现在继续探索:
任务要求:
(1)当AD⊥BC时,如图2,求证:AB+BD=DC;
(2)当AD是∠BAC的角平分线时,判断AB、BD、AC的数量关系,并证明你的结作业宝论.

查看答案和解析>>

同步练习册答案