精英家教网 > 初中数学 > 题目详情
17.计算:
(1)|$\sqrt{3}$-2|+20100-($\frac{1}{3}$)-1+3tan30°  
(2)2sin30°+4cos30°•tan60°-cos245°
(3)$2sin45°+2cos60°-\sqrt{3}tan60°+\sqrt{18}$
(4)$\frac{{sin{{60}°}+3tan{{30}°}•cos{{60}°}}}{{({1-2tan{{45}°}})•tan{{60}°}}}$.

分析 根据实数的运算法则,负指数的性质,特殊角是三角函数的值计算即可.

解答 解:(1)|$\sqrt{3}$-2|+20100-($\frac{1}{3}$)-1+3tan30°=2-$\sqrt{3}$+1-3+3×$\frac{\sqrt{3}}{3}$=0;
(2)2sin30°+4cos30°•tan60°-cos245°=2×$\frac{1}{2}$+4×$\frac{\sqrt{3}}{2}$×$\sqrt{3}$-($\frac{\sqrt{2}}{2}$)2=$\frac{13}{2}$;
(3)$2sin45°+2cos60°-\sqrt{3}tan60°+\sqrt{18}$=2×$\frac{\sqrt{2}}{2}$+2×$\frac{1}{2}$-$\sqrt{3}•\sqrt{3}$+3$\sqrt{2}$=4$\sqrt{2}$-2;
(4)$\frac{{sin{{60}°}+3tan{{30}°}•cos{{60}°}}}{{({1-2tan{{45}°}})•tan{{60}°}}}$=$\frac{\frac{\sqrt{3}}{2}+3×\frac{\sqrt{3}}{3}×\frac{1}{2}}{(1-2×1)•\sqrt{3}}$=-1.

点评 本题考查了实数的运算法则,负指数的性质,特殊角是三角函数,熟练特殊角是三角函数是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.某一河流的警戒水位为50.2米,最高水位为54.5米,平均水位为45.3米,最低水位为27.3米.如果取警戒水位作为0点,则最高水位为4.3米,平均水位为-4.9米,最低水位为-22.9米.(高于警戒水位记为正数).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,以点P(-1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.
(1)求B、C两点的坐标;
(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;
(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.小明所在的数学兴趣小组研究一个课题“如何根据条件唯一的作出一个三角形”?研究后他们发现这与“如何作一个三角形与已知三角形全等”是一样的,如果提供的条件可以证明两个三角形全等,那么这些条件下作出的三角形肯定是唯一的.
(1)如果下列条件肯定可以作三角形,那么其中不唯一的是D.
A:已知两条边和夹角  B:已知三边  C:已知两角和夹边 D:已知两条边和一边的对角
(2)如果线段AB=4厘米,AC=5厘米,AD=3厘米,以AB、AC作为△ABC两边,AD为BC边上的高,请你设计一个方案作出满足如上条件的△ABC,并简要说明理由;
(3)如果将(2)中AD改为BC边上的角平分线,请你同样设计一个方案作出满足条件的△ABC,并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知,如图正方形ABCD中,E为BC上任意一点,过E作EF⊥BC,交BD于F,G为DF的中点,连AE和AG.
(1)如图1,求证:∠FEA+∠DAG=45°;
(2)如图2在(1)的条件下,设BD和AE的交点为H,BG=8,DH=9,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某车间有甲、乙两个生产小组生产同一产品,在去年的某月,甲组的5名工人完成的总工作量比此月此车间的人均定额的3倍多10件,乙组的6名工人完成的总工作量比此月此车间的人均定额的4倍少10件.如果此月甲组工人完成的人均工作量比乙组工人完成的人均工作量少1件,求此月此车间的人均工作定额.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)操作发现:如图①,D是等边三角形ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边三角形DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.
(2)类比猜想:如图②,当动点D运动到等边三角形ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?如果成立,请证明;如果不成立,是否有新的结论?如果有新的结论,直接写出新的结论,不需证明.
(3)深入探究:
①如图③,当动点D在等边三角形ABC的边BA上运动时(点D与点B不重合),连接DC,以DC为边在其上方、下方分别作等边三角形DCF和等边三角形DCF',连接AF,BF'.探究AF,BF'与AB有何数量关系?直接写出你的结论,不需证明.
②如图④,当动点D在等边三角形ABC的边BA的延长线上运动时,其他作法与图③相同,①中的结论是否仍然成立?如果成立,请证明;如果不成立,是否有新的结论?如果有新的结论,直接写出新的结论,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知$\sqrt{x}$($\sqrt{x}$+$\sqrt{y}$)=3$\sqrt{y}$($\sqrt{x}$+5$\sqrt{y}$),求$\frac{2x+\sqrt{xy}+3y}{x+\sqrt{xy}-y}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,正方形ABCD中,AB=7,M是DC上的一点,且DM=3,N是AC上的一动点,求|DN-MN|的最小值与最大值.

查看答案和解析>>

同步练习册答案