精英家教网 > 初中数学 > 题目详情
19.如图,Rt△ABC中,∠ACB=90°,BC=4cm,AC=3cm,⊙O是以BC为直径的圆,如果⊙O与⊙S相内切,那么⊙A的半径为$\sqrt{13}+2$cm.

分析 连接A0并延长交⊙A于D,则OD=$\frac{1}{2}$BC=2,根据勾股定理求出OA,即可得出AD=OA+OD=$\sqrt{13}+2$.

解答 解:连接A0并延长交⊙A于D,如图所示:
∵⊙O与⊙A相内切,
∴D为切点,
∴OD=$\frac{1}{2}$BC=2,
∵∠ACB=90°,
根据勾股定理得:OA=$\sqrt{O{C}^{2}+A{C}^{2}}$=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$,
∴AD=OA+OD=$\sqrt{13}+2$;
故答案为:$\sqrt{13}+2$.

点评 本题考查了相切两圆的性质、勾股定理;通过作辅助线得出AD是⊙A的半径是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,抛物线y=-x2+bx+c经过点A(-1,0),B(3,0),与y轴相交于点C.
(1)求这条抛物线的解析式;
(2)经过点D(2,2)直线与抛物线交于M,N两点,若线段MN正好被直线BC平分,求直线MN的解析式;
(3)直线x=a上存在点P,使得△PBC为等腰三角形?若这样的点P有且只有三个,请直接写出符合条件的a值及其取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若双曲线y=$\frac{k}{x}$与边长为4的等边△AOB的边OA,AB分别相交于E,F两点,且EF⊥AE,则实数k的值为$\frac{36\sqrt{3}}{25}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.对实数a,b,定义运算“★”:a★b=$\left\{\begin{array}{l}{a(a≥0)}\\{b(a<0)}\end{array}\right.$,设y=(-x-1)★(x-1),则不等式y>0的解为(  )
A.x<1B.-1<x<1C.x>-1D.x<-1或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在矩形ABCD中,点P是边AD上的动点,连结BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,连结QP.已知AD=13,AB=5,设AP=x,BQ=y.
(1)用含x的代数式表示y,即 y=$\frac{25+{x}^{2}}{2x}$;
(2)求当x取何值时,以AP长为半径的⊙P和以QC长为半径的⊙Q外切.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在菱形ABCD中,AB=5,∠BCD=120°,则菱形的面积为$\frac{25\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在?ABCD中,∠A=60°,DE⊥AB,DF⊥BC,垂足分别为点E、F,有下列结论:①AB=2DF;②DE•CF=DF•AE;③∠DFE=∠CDB;④如果?ABCD的面积为8,则△DEF的面积为3,其中正确结论的序号是②③④(把所有正确结论的序号填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图所示,已知ABC,∠C=90°,AC=BC=4,现将△ABC沿CB方向平移到△A1B1C1的位置.
(1)若平移的距离为1.5,求△ABC和△A1B1C1的重叠部分的面积;
(2)若设平移距离为x,△ABC和△A1B1C1重叠部分的面积为y,试用含x的代数式表示y.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程组:
(1)$\left\{\begin{array}{l}{y=2x-7}\\{5x+3y+2z=2}\\{3x-4z=4}\end{array}\right.$
(2)$\left\{\begin{array}{l}{4x+9y=12}\\{3y-2z=1}\\{7x+5z=\frac{19}{4}}\end{array}\right.$.

查看答案和解析>>

同步练习册答案