【题目】如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连接BD.(1)求证:BD=AC;
(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.
ⅰ)如图②,当点F落在AC上时(F不与C重合),若BC=4,tanC=3,求AE的长;
ⅱ)如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由。
【答案】(1)证明见解析;(2)(I)AE=;(II) .
【解析】(1)先判断出AH=BH,再判断出△BHD≌△AHC即可;
(2)①先根据tanC=3,求出AH=3,CH=1,然后根据△EHA≌△FHC,得到,HP=3AP,AE=2AP,最后用勾股定理即可;
②先判断出△AGQ∽△CHQ,得到,然后判断出△AQC∽△GQH,用相似比即可.
解:(1)在Rt△AHB中,∠ABC=45°,
∴AH=BH,
在△BHD和△AHC中,
AH=BH,∠BHD=∠AHC=90°,DH=CH,
∴△BHD≌△AHC,
∴BD=AC,
(2)①如图,
在Rt△AHC中,
∵tanC=3,∴=3,
设CH=x,∴BH=AH=3x,
∵BC=4,∴3x+x=4,∴x=1,
∴AH=3,CH=1,
由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,
∴∠EHA=∠FHC, ,
∴△EHA≌△FHC,
∴∠EAH=∠C,
∴tan∠EAH=tanC=3,
过点H作HP⊥AE,
∴HP=3AP,AE=2AP,
在Rt△AHP中,AP2+HP2=AH2,
∴AP2+(3AP)2=9,
∴AP=,
∴AE=;
②由①有,△AEH和△FHC都为等腰三角形,
∴∠GAH=∠HCG=90°,
∴△AGQ∽△CHQ,
∴,
∴,
∵∠AQC=∠GQE,
∴△AQC∽△GQH,
∴=sin30°=.
“点睛”此题是几何变换综合题,主要考查例 旋转的性质,全等三角形的性质和判定,勾股定理,锐角三角函数的意义,等腰三角形的判定和性质,解本题的关键是相似三角形性质和判定的运用.
科目:初中数学 来源: 题型:
【题目】如图,是反比例函数y= 的图象的一支.根据给出的图象回答下列问题:
(1)该函数的图象位于哪几个象限?请确定m的取值范围
(2)在这个函数图象的某一支上取点A(x1 , y1)、B(x2 , y2).如果y1<y2 , 那么x1与x2有怎样的大小关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AGF=∠ABC,∠1+∠2=180°.
(1)试判断BF与DE的位置关系,并说明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△BnCnMn的面积为Sn,则Sn= .(用含n的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD , DP⊥AB于P . 若四边形ABCD的面积是18,则DP的长是( ).
A.
B.2
C.
D.18
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com