分析 首先分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.
解答 解:$\left\{\begin{array}{l}{\frac{x+2}{3}-1>x①}\\{2(1-x)≤5②}\end{array}\right.$,
由①得:x<-$\frac{1}{2}$,
由②得:x≥-$\frac{3}{2}$,
不等式组的解集为:-$\frac{3}{2}$≤x<-$\frac{1}{2}$,
在数轴上表示为:
.
点评 此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
科目:初中数学 来源: 题型:选择题
| A. | x>-2 | B. | x<-2 | C. | -3<x<-2 | D. | -3<x<-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{2(x+\frac{y}{2})=99}\\{\frac{x}{2}+y=66}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{2x+y=66}\\{\frac{x}{2}+y=99}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{\frac{x}{2}+y=66}\\{\frac{x}{2}+2y=99}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+2y=99}\\{2x+y=66}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com