精英家教网 > 初中数学 > 题目详情
如图,抛物线y=x2+2x-3与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的顶点坐标;
(2)设直线y=x+3与y轴的交点是D,在线段AD上任意取一点E(不与A、D重合),经过A、B、E三点的圆交直线AC于点F,试判断△BEF的形状.
(1)∵y=x2+2x-3,
∴y=(x+1)2-4
∴顶点坐标是(-1,-4)
(2)△BEF是等腰直角三角形.
连接BE、BF、EF得到△BEF.
∵y=x2+2x-3与x轴交于A、B两点,
∴y=0时,x2+2x-3=0,求得:
x1=-3,x2=1,
∴A(-3,0).
当x=0时,y=-3,
∴C(0,-3).
∵直线y=x+3与y轴的交点是D,
∴x=0时,y=3,
∴D(0,3),
∴OA=OC=OD=3,

∴∠EAB=∠FAB=45°
∵∠EAB=∠EFB,∠FAB=∠FEB
∴∠EFB=∠FEB=45°
∴∠EBF=90°,EB=FB,
∴△BEF是等腰直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(-2,0),O(0,0),B(0,2),把Rt△AOB绕着点O顺时针旋转90°得到Rt△BOC,(点A旋转到点B的位置),抛物线y=ax2+bx+c(a≠0)经过B,C两点,与x轴的另一个交点为点D,顶点为点P,对称轴为直线x=3,
(1)求该抛物线的解析式;
(2)连接BC,CP,PD,BD,求四边形PCBD的面积;
(3)在抛物线上是否存在一点M,使得△MDC的面积等于四边形PCBD的面积
1
3
?如果存在,求出点M的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一个横截面为抛物线形的遂道底部宽12米,高6米,如图,车辆双向通行,规定车辆必须在中心线右侧距道路边缘2米这一范围内行驶,并保持车辆顶部与遂道有不少于
1
3
米的空隙,你能否根据这些要求,建立适当的坐标系,利用所学的函数知识,确定通过隧道车辆的高度限制.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6),将△BCD沿BD折叠(D点在OC上),使C点落在OA边的E点上,并将△BAE沿BE折叠,恰好使点A落在BD边的F点上.
(1)求BC的长,并求折痕BD所在直线的函数解析式;
(2)过点F作FG⊥x轴,垂足为G,FG的中点为H,若抛物线y=ax2+bx+c经过B、H、D三点,求抛物线解析式;
(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC,分别交BC和BD于点N、M,是否存在这样的点P,使S△BNM=S△BPM?如果存在,求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:m是非负数,抛物线y=x2-2(m+1)x-(m+3)的顶点Q在直线y=-2x-2上,且和x轴交于点A、B(点A在点B的左侧).
(1)求A、B、Q三点的坐标.
(2)如果点P的坐标为(1,1).求证:PA和直线y=-2x-2垂直.
(3)点M(x,1)在抛物线上,判断∠AMB和∠BAQ的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.
(1)求抛物线解析式;
(2)BC的垂直平分线交抛物线于D、E两点,求直线DE的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.
(1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值;
(3)探究:△ABC的最大面积?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

东方商厦专销某品牌的计算器,已知每只计算器的进价是12元,售价是20元.为了促销,商厦决定:凡是一次性购买10只以上(不含10只)的顾客,每多买1只计算器,其购买的每只计算器的售价就降低O.10元(假设顾客购买了18只计算器,则每只计算器售价为:20-0.10×(18-10)=19.20元,顾客应付的购货款为:18×19.20=345.60元),但最低售价为16元/只.
(1)求顾客至少一次性购买多少只计算器,才能以最低价购买?
(2)设顾客一次性购买x(10<x≤50)只计算器时,东方商厦可获利润y(元),试求y与x之间的函数关系式及商厦的最大利润;
(3)有一天,一位顾客一次性购买了46只计算器,另一位顾客一次性购买了50只计算器,结果商厦发现卖50只反而比卖46只赚的钱少.为了使每次获利随着销量的增大而增大,在其他促销条件不变的情况下,商厦应将最低价16元/只至少提高到多少?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BCx轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.

查看答案和解析>>

同步练习册答案