解:(1)

过点E作EF∥AB,如图(b),
则∠ABE+∠BEF=180°,(两直线平行,同旁内角互补)
因为∠ABE+∠BED+∠EDC=360°,(已知 )
所以∠FED+∠EDC=180°,(等式的性质)
所以 FE∥CD,(同旁内角互补,两直线平行)
∴AB∥CD (或平行线的传递性 ).
(2)如图(c),当∠1、∠2、∠3满足条件∠1+∠3=∠2时,有AB∥CD.
理由:过点E作EF∥AB.
∴∠1=∠BEF;
∵∠1+∠3=∠2,∠2=∠BEF+∠DEF,
∴∠3=∠DEF,
∴EF∥CD,
∴AB∥CD(平行线的传递性);

(3)如图(d),当∠B、∠E、∠F、∠D满足条件∠B+∠E+∠F+∠D=540°时,有AB∥CD.
理由:
过点E、F分别作GE∥HF∥CD.
则∠GEF+∠EFH=180°,∠HFD+∠CDF=180°,
∴∠GEF+∠EFD+∠FDC=360°;
又∵∠B+∠E+∠F+∠D=540°,
∴∠ABE+∠BEG=180°,
∴AB∥GE,
∴AB∥CD;
故答案是:(1)两直线平行,同旁内角互补、已知、180、同旁内角互补,两直线平行或平行线的传递性;
(2)∠1+∠3=∠2;
(3)∠B+∠E+∠F+∠D=540°.
分析:(1)过点E作EF∥AB.由两直线平行,同旁内角互补及已知条件∠B+∠E+∠D=360°求得∠FED+∠EDC=180°;然后根据平行线的传递性证得AB∥CD;
(2)过点E作EF∥AB.由两直线平行,内错角相等求得∠1=∠BEF;再用已知条件∠1+∠3=∠2,∠2=∠BEF+∠DEF推知内错角∠3=∠DEF,所以EF∥CD;最后根据平行线的传递性得出结论;
(3)过点E、F分别作GE∥HF∥CD.根据同旁内角互补以及已知条件求得同旁内角∠ABE+∠BEG=180°,所以AB∥GE;最后根据平行线的传递性来证得AB∥CD.
点评:本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.