精英家教网 > 初中数学 > 题目详情
已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是   
(﹣1,1)。
根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,下减上加。因此,
原来点M的横坐标是3,纵坐标是﹣2,向左平移4个单位,得到新点的横坐标是3﹣4=﹣1;再向上平移3个单位得到新点的纵坐标为﹣2+3=1。即点N的坐标是(﹣1,1)。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,已知四边形ABCD,点P为平面内一动点.如果∠PAD=∠PBC,那么我们称点P为四边形ABCD关于A、B的等角点. 如图2,以点B为坐标原点,BC所在直线为x轴建立平面直角坐标系,点C的横坐标为6.

(1)若A、D两点的坐标分别为A(0,4)、D(6,4),当四边形ABCD关于A、B的等角点P在DC边上时,则点P的坐标为                 
(2)若A、D两点的坐标分别为A(2,4)、D(6,4),当四边形ABCD关于A、B的角点P在DC边上时,求点P的坐标;
(3)若A、D两点的坐标分别为A(2,4)、D(10,4),点P(x,y)为四边形ABCD关于A、B的等角点,其中x>2,y>0,求y与x之间的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(12分)△ABC在直角坐标系内的位置如图所示.

(1)分别写出A、B、C的坐标(3分)
(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于轴对称,并写出B1的坐标;(4分)
(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标;(5分);

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A、C重合),过点F分别作x轴、y轴的垂线,垂足为G、E.设四边形BCFE的面积为S1,四边形CDGF的面积为S2,△AFG的面积为S3

(1)试判断S1、S2,的关系,并加以证明;
(2)当S3:S1=1:3时,求点F的坐标;
(3)如图,在(2)的条件下,把△AEF沿对角线AC所在直线平移,得到△A’E’F’,且A’、F’两点始终在直线AC上,是否存在这样的点E’,使点E’到x轴的距离与到y轴的距离比是5:4.若存在,请求出点E’的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,点P(-3,5)关于x轴的对称点的坐标为(     )
A.()B.(3,5)C.(3,)D.(5,)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且OQ=OC,连接CQ并延长CQ交边AB于点P,则点P的坐标为(        ).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,﹣3),△AB′O′是△ABO关于的A的位似图形,且O′的坐标为(﹣1,0),则点B′的坐标为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,有一条直线l:与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.

(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标     
(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;
(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

点P(a+5,a﹣1)是第四象限的点,且到x轴的距离为2,那么P的坐标为   

查看答案和解析>>

同步练习册答案