精英家教网 > 初中数学 > 题目详情

如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图2形状拼成一个正方形.
(1)图2中的空白部分的正方形的边长是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求图2中空白部分的正方形的面积.
(3)观察图2,用一个等式表示下列三个整式:(a+b)2,(a-b)2,ab之间的数量关系.

解:(1)图2中空白部分正方形的边长为(a-b);

(2)由图2可知:大正方形的边长为(a+b),
所以:大正方形的面积为(a+b)2
所以:空白部分的正方形面积=大正方形的面积-四个小长方形的面积
即=(a+b)2-4ab=72-4×6=25

(3)由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积
即:(a+b)2=(a-b)2+4ab
分析:(1)观察由已知图形,得到四个小长方形的长为2a÷2=a,宽为2b÷2=b,那么图2中的空白部分的正方形的边长是小长方形的长减去小长方形的宽.
(2)通过观察图形,大正方形的边长为小长方形的长和宽的和.图2中空白部分的正方形的面积为大正方形的面积减去四个小长方形的面积.
(3)通过观察图形知:(a+b)2,(a-b)2,ab分别表示的是大正方形、空白部分的正方形及小长方形的面积.
点评:此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握.关键是通过观察图形
找出各图形之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图2形状拼成一个正方形.
(1)图2中的空白部分的正方形的边长是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求图2中空白部分的正方形的面积.
(3)观察图2,用一个等式表示下列三个整式:(a+b)2,(a-b)2,ab之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.
(1)图2的阴影部分的正方形的边长是
a-b
a-b

(2)用两种不同的方法求图中阴影部分的面积.
【方法1】S阴影=
(a-b)2
(a-b)2

【方法2】S阴影=
(a+b)2-4ab
(a+b)2-4ab

(3)观察如图2,写出(a+b)2,(a-b)2,ab这三个代数式之间的等量关系.
(4)根据(3)题中的等量关系,解决问题:
若x+y=10,xy=16,求x-y的值.

查看答案和解析>>

科目:初中数学 来源:江西省期末题 题型:解答题

如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图2形状拼成一个正方形.
(1)图2中的空白部分的正方形的边长是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求图2中空白部分的正方形的面积.
(3)观察图2,用一个等式表示下列三个整式:(a+b)2,(a﹣b)2,ab之间的数量关系.
                                                  
                                                   图1                                                图2

查看答案和解析>>

科目:初中数学 来源:江西省期末题 题型:解答题

如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图2形状拼成一个正方形。
(1)图2中的空白部分的正方形的边长是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求图2中空白部分的正方形的面积;
(3)观察图2,用一个等式表示下列三个整式:(a+b)2,(a-b)2,ab之间的数量关系。

查看答案和解析>>

同步练习册答案