精英家教网 > 初中数学 > 题目详情
一个圆的面积变为原来的n倍,则半径变为原来的
n
n
倍;一个正方体的体积变为原来的n倍,则棱长变为原来的
3n
3n
倍.
分析:根据圆的面积和半径之间是平方关系而非正比例关系计算即可求解.
设原先体积为V,棱长为a,现在体积为nV,棱长为b,根据立方根的定义求出a和b,然后作比较.
解答:解:设圆原来的面积为S,原来的半径为r,设现在的半径为R.
根据题意得:πR2=nπr2,R=
n
r,则它的半径是原来的
n
倍.

设原先体积为V,棱长为a,
则a=
3V

现在体积为nV,棱长为b,
则b═
3nV

b
a
=
3nV
3V
=
3n

故答案为
n
3n
点评:本题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.
本题主要考查立方根的知识点,解答此题的关键找出体积的变化,分别求出棱长,最后进行比较,得到答案.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

一个圆的面积变为原来的n倍,则半径变为原来的________倍;一个正方体的体积变为原来的n倍,则棱长变为原来的________倍.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个圆的面积变为原来的n倍,则半径变为原来的______倍;一个正方体的体积变为原来的n倍,则棱长变为原来的______倍.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:填空题

一个圆的面积变为原来的n倍,则半径变为原来的(    )倍;一个正方体的体积变为原来的n倍,则棱长变为原来的(    )倍。

查看答案和解析>>

科目:初中数学 来源: 题型:

一个圆的面积变为原来的n倍,则半径变为原来的    倍;一个正方体的体积变为原来的n倍,则棱长变为原来的    倍.

查看答案和解析>>

同步练习册答案