精英家教网 > 初中数学 > 题目详情
(2004•嘉兴)如图,已知⊙B的半径r=1,PA、PO是⊙B的切线,A、O是切点.过点A作弦AC∥PO,连接CO、AO(如图1).
(1)问△PAO与△OAC有什么关系?证明你的结论;
(2)把整个图形放在直角坐标系中(如图2),使OP与x轴重合,B点在y轴上.
设P(t,0),P点在x轴的正半轴上运动时,四边形PACO的形状随之变化,当这图形满足什么条件时,四边形PACO是菱形?说明理由.

【答案】分析:(1)两三角形相似,根据平行线可得一组对应角相等,根据弦切角可得另一组对应角相等;
(2)如果PACO是菱形,那么PA=PO=OC=OA=AC,△OAC就是等边三角形,那么可过B作等边三角形边上的高,通过构建的直角三角形来求t的值.
解答:解:(1)结论:两三角形相似.
证明:∵PA是圆的切线,
∴∠PAO=∠C
∵AC∥PO
∴∠CAO=∠POA
∴△PAO∽△OCA;

(2)当四边形PACO是菱形时,PA=PO=OC=AC=t
∵PA=OP,△PAO∽△OCA
∴OC=OA
∴△OCA是等边三角形
过B作BH⊥AC于H,连接BC,
直角△BCH中,∠CBH=60°,BC=1,CH=
CH=BC•sin60°==
t=
因此当P点坐标是(,0)时,四边形PACO是菱形.
点评:本题主要考查了切线的性质,菱形的判定以及相似三角形的判定和性质等知识点.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•嘉兴)如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省衢州市初中毕业生学业考试模拟试卷(解析版) 题型:解答题

(2004•嘉兴)如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年浙江省舟山市中考数学试卷(解析版) 题型:解答题

(2004•嘉兴)如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年浙江省嘉兴市中考数学试卷(解析版) 题型:解答题

(2004•嘉兴)如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案