精英家教网 > 初中数学 > 题目详情
观察:
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
…通过观察,当
a-1
+(ab-2)2=0
时,求:
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2012)(b+2012)
的值.
分析:先根据非负数的性质求出a、b的值,再根据所给的例子进行计算即可.
解答:解:∵
a-1
+(ab-2)2=0,a-1≥0,(ab-2)2≥0
∴a-1=0,ab-2=0,
∴a=1,b=1
原式=
1
1×2
+
1
2×3
+
2
3×4
+…+
1
2013×2014

=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2013
-
1
2014

=1-
1
2014

=
2013
2014
点评:本题考查的是分式的化简求值,根据题意找出规律是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,将以上三个等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并写出:
1
n(n+1)
=
 

(2)直接写出下列各式的计算结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
 

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 

(3)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2006×2008

查看答案和解析>>

科目:初中数学 来源: 题型:

已知
a-1
+(ab-2)2=0

观察:
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
通过观察,求:
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2010)(b+2010)
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,将以上三个等式相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并写出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接写出结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
2006
2007
2006
2007

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知
a-1
+(ab-2)2=0

观察:
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
通过观察,求:
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2010)(b+2010)
的值.

查看答案和解析>>

同步练习册答案